

 M T S

 The Michigan Terminal System

 Volume 3: System Subroutine Descriptions

 Reference R1003

 April 1981

 Updated March 1982 (Update 1)
 Updated February 1983 (Update 2)
 Updated January 1984 (Update 3)
 Updated September 1984 (Update 4)
 Updated April 1985 (Update 5)
 Updated September 1985 (Update 6)
 Updated July 1987 (Update 7)
 Updated September 1989 (Update 8)

 The University of Michigan Computing Center
 Ann Arbor, Michigan

 1

 DISCLAIMER

 This volume is intended to represent the current state of the
 Michigan Terminal System (MTS), but because the system is constantly
 being developed, extended, and refined, sections of this volume will
 become obsolete. The user should refer to the U-M Computing News, ___ _________ ____
 Computing Center Memos, and future updates to this volume for the latest
 information about changes to MTS.

 Copyright 1981 by the Regents of the University of Michigan. Copying is
 permitted for nonprofit, educational use provided that (1) each repro-
 duction is done without alteration and (2) the volume reference and date
 of publication are included. Permission to republish any portions of
 this manual should be obtained in writing from the Director of the
 University of Michigan Computing Center.

 2

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 PREFACE _______

 The software developed by the Computing Center staff for the
 operation of the high-speed processor computer can be described as a
 multiprogramming supervisor that handles a number of resident, reentrant
 programs. Among them is a large subsystem, called MTS (Michigan
 Terminal System), for command interpretation, execution control, file
 management, and accounting maintenance. Most users interact with the
 computer’s resources through MTS.

 The MTS Manual is a series of volumes that describe in detail the
 facilities provided by the Michigan Terminal System. Administrative
 policies of the Computing Center and the physical facilities provided
 described in other publications.

 The MTS volumes now in print are listed below. The date indicates
 the most recent edition of each volume; however, since volumes are
 periodically updated, users should check the file *CCPUBLICATIONS, or
 watch for announcements in the U-M Computing News, to ensure that their ___ _________ ____
 MTS volumes are up to date.

 Volume 1: The Michigan Terminal System, November 1988 ____________________________
 Volume 2: Public File Descriptions, January 1987 ________________________
 Volume 3: System Subroutine Descriptions, March 1989 ______________________________
 Volume 4: Terminals and Networks in MTS, July 1988 _____________________________
 Volume 5: System Services, May 1983 _______________
 Volume 6: FORTRAN in MTS, October 1983 ______________
 Volume 7: PL/I in MTS, September 1982 ___________
 Volume 8: LISP and SLIP in MTS, June 1976 ____________________
 Volume 9: SNOBOL4 in MTS, September 1975 ______________
 Volume 10: BASIC in MTS, December 1980 ____________
 Volume 11: Plot Description System, August 1978 _______________________
 Volume 12: PIL/2 in MTS, December 1974 ____________
 Volume 13: The Symbolic Debugging System, September 1985 _____________________________
 Volume 14: 360/370 Assemblers in MTS, May 1983 _________________________
 Volume 15: FORMAT and TEXT360, April 1977 __________________
 Volume 16: ALGOL W in MTS, September 1980 ______________
 Volume 17: Integrated Graphics System, December 1980 __________________________
 Volume 18: The MTS File Editor, February 1988 ___________________
 Volume 19: Tapes and Floppy Disks, March 1989 ______________________
 Volume 20: Pascal in MTS, January 1989 _____________
 Volume 21: MTS Command Extensions and Macros, April 1986 _________________________________
 Volume 22: Utilisp in MTS, May 1988 ______________
 Volume 23: Messaging and Conferencing in MTS, August 1988 _________________________________

 The numerical order of the volumes does not necessarily reflect the
 chronological order of their appearance; however, in general, the higher
 the number, the more specialized the volume. Volume 1, for example,

 3

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 introduces the user to MTS and describes in general the MTS operating
 system, while Volume 10 deals exclusively with BASIC.

 The attempt to make each volume complete in itself and reasonably
 independent of others in the series naturally results in a certain
 amount of repetition. Public file descriptions, for example, may appear
 in more than one volume. However, this arrangement permits the user to
 buy only those volumes that serve his or her immediate needs.

 Richard A. Salisbury,

 General Editor

 4

 MTS 3: System Subroutine Descriptions

 April 1981

 PREFACE TO REVISED VOLUME 3 ___________________________

 The April 1981 edition reflects the changes that have been made to
 MTS since October 1976. Some of these changes were described in Updates
 1-5 and are incorporated into this revision.

 The section "PL/I Library Subroutines" has been deleted from this
 edition as those subroutines are currently described in MTS Volume 7,
 PL/I in MTS. ___________

 The section "External Symbol Index" has been deleted. This informa-
 tion is now available through the program *SYMBOLS.

 The following subroutine descriptions have been added to this edition
 since Update 5 (April 1980).

 CHKPAR
 COMMAND
 GPRJNO
 NPAR
 PKEY
 RSSAS
 TRLCUC, TRUCLC
 TRTLC, TRTUC, TRTNONAN

 The following subroutines have been deleted from this edition as they
 are no longer actively supported by the Computing Center. Descriptions
 of these subroutines may be found in the October 1976 edition of MTS
 Volume 3, System Subroutine Descriptions, which is available in the ______________________________
 Computing Center staff library.

 CVTOMR
 E7090, D7090, E7090P, D7090P
 KEYWRD
 TRACER

 The following subroutine has been deleted from this edition as it is
 callable only from internal system programs.

 SETFPRIV

 The CASECONV subroutine description is now a part of the TRLCUC,
 TRUCLC subroutine description.

 A special edition of this volume has been published for use by
 systems programmers. This edition contains descriptions of several
 internal system subroutines which are callable only from system mode or

 5

 MTS 3: System Subroutine Descriptions

 April 1981

 which contain parameters which are only of use to systems programs. A
 copy of this edition is available in the Computing Center Staff Library.

 6

 MTS 3: System Subroutine Descriptions

 April 1981

 Contents ________

 Preface 3 LAND 61
 LCOMPL 61
 Preface to Revised Volume 3 . . 5 LOR 61
 LXOR 61
 Using Subroutine Libraries . . 11 OR 61
 SHFTL 61
 Subroutines Libraries SHFTR 61
 Available in MTS 13 XOR 61
 Blocked Input/Output
 Subject Categories of Routines 63
 Subroutines 19 QGETUCB 64
 Character and Numeric QOPEN 65
 Conversion 19 QGET 67
 Date and Time Conversion . . 19 QPUT 69
 File and Device Usage 20 QCLOSE 71
 FORTRAN Usage 21 QFREEUCB 72
 Input/Output Routines 22 QCNTRL 73
 Interrupt Processing 22 BLOKLETR 75
 Status of User and System . . 22 CALC 77
 System Utilities 23 CANREPLY 81
 Virtual Memory Management . . 23 CATSCAN 82.1
 CFDUB 83
 Calling Conventions 25 Character Manipulation
 Routines 85
 Resident System and *LIBRARY BTD 87
 Subroutines 35 COMC 88
 ADROF 37 DTB 89
 ANSI Standard Bit EQUC 91
 Manipulation Subroutines . . 38.1 FINDC 92
 ANSI Standard File Control FINDST 94
 Subroutines 38.3 IGC 95
 Array Management Subroutines 39 LCOMC 97
 ARINIT 41 MOVEC 98
 ARRAY, ARRAY2 42 SETC 99
 EXTEND, XTEND2 44 TRNC 100
 ERASE 46 TRNST101
 ERASAL 46 CHARGE 103
 ASCEBC, IASCEBC 47 CHGFSZ 107
 ATNTRP 53 CHGMBC 109
 ATTNTRP 55 CHGXF111
 BINEBCD 57 CHKACC 115
 BINEBCD2 59 CHKFDUB117
 BMS (Bit Manipulation CHKFILE119
 Subroutines) 60.1 CHKPAR 121
 Bitwise Logical Functions . . 61 CLOSEFIL 125
 AND 61 CMD127
 COMPL 61 CMDNOE 129

 7

 MTS 3: System Subroutine Descriptions

 April 1981

 CNFGINFO 131 LINK, LINKF319
 CNTLNR 137 LIOUNITS 325
 COMMAND139 LOAD, LOADF327
 CONTROL143 LOADINFO 335
 COST 147 LOCK 339
 CREATE 149 LODMAP 343
 CRYPT151 Logical Operators345
 CSGET, CSSET 152.1 ICLC 345
 DESTROY153 IED345
 DISMOUNT 155 IEDMK345
 DUMP, PDUMP157 IMVC 345
 EBCASC, IEBCASC159 INC345
 EDIT 167 IOC345
 EMPTY179 ITR345
 EMPTYF 181 ITRT 345
 ERROR183 IXC345
 FILEINFO 184.1 LSFILE 348.1
 FNAMETRT 185 LSTASK 348.5
 FREAD/FWRITE 187 MOUNT349
 FREEFD 189 MTS355
 FREESPAC 191 MTSCMD 357
 FSIZE193 NOTE 359
 FSRF, BSRF 195 NPAR 361
 FTNCMD 197 OSGRDT 363
 GDINF199 PAR365
 GDINFO 201 PARSTR 366.1
 GDINFO2207 Pattern-Matching Routines . .366.3
 GDINFO3209 PATBUILD 366.4
 GETFD211 PATMATCH 366.7
 GETFST, GETLST 213 PATFREE366.9
 GETIME 215 PERMIT 367
 GETSPACE 217 PGNTTRP371
 GFINFO 221 PKEY 373
 GPRJNO 229 POINT375
 GPSECT, QPSECT, FPSECT . . .231 Printer Plot Routines377
 GRAND, GRAND1233 PLOT1381
 GRGJULDT, GRGJULTM, GRJLSEC .235 PLOT2382
 GRJLDT, GRJLTM 237 PLOT3383
 GROSDT 239 PLOT4384
 GTDJMS 241 PLOT14 385
 GTDJMSR243 PRCHAR 386
 GUINFO, CUINFO 245 PREND387
 GUINFUPD 271 PRPLOT 388
 GUSER273 STPLT1 390
 GUSERID275 STPLT2 391
 IBSCH276.1 SETLOG 392
 IOH277 OMIT 393
 JLGRDT, JLGRTM 279 QUIT 395
 JMSGTD, JTUGTD 283 RCALL397
 JMSGTDR, JTUGTDR 285 READ 399
 JULGRGDT, JULGRGTM, JLGRSEC .287 READBFR403
 KWSCAN 289 RENAME 405
 LETGO317 RENUMB 407

 8

 MTS 3: System Subroutine Descriptions

 April 1981

 RETLNR 409 TIME 503
 REWIND 413 Time Routines506.1
 REWIND#415 TIMEIN 506.14
 RSSAS417 TIMEOUT506.17
 RSTIME 419 TIMEGIN506.19
 SCANSTOR 421 TIMNTRP507
 SCARDS 423 TOUCH508.1
 Screen-Support Routines . . .424.1 Translation Routines 508.5
 SSATTR 424.1 TRLCUC, TRUCLC 509
 SSBGNS 424.1 TRTLC, TRTUC, TRTNONAN . . .511
 SSCREF 424.1 TRUNC513
 SSCTNS 424.1 TWAIT515
 SSCTRL 424.1 UNLK 517
 SSCURS 424.1 UNLOAD, UNLDF519
 SSDEFF 424.1 URAND521
 SSDELF 424.1 WRITE523
 SSDELS 424.1 WRITEBUF 527
 SSENDS 424.1 XCTL, XCTLF529
 SSINFO 424.1 Xerox 9700 Font Routines . .534.1
 SSINIT 424.1 FNTINF 534.2
 SSLOCN 424.1 FNTSCN 534.3
 SSREAD 424.1 FNTWID 534.5
 SSTERM 424.1 FNTBLK 534.6
 SSTEXT 424.1
 SSWRIT 424.1 The Elementary Function
 SDUMP425 Library535
 SERCOM 429
 SETFSAVE 431 I/O Subroutine Return Codes . .549
 SETIME 435
 SETIOERR 439 I/O Modifiers555
 SETKEY 441
 SETLCL 445 System Device List 566.1
 SETLIO 447
 SETLNR 449 Subroutines Using Files and
 SETPFX 453 Devices567
 SIOC 455
 SIOCP463
 SIOERR 467
 SKIP 469
 SORT 473
 SORT2, SORT3, SORT4475
 SORT4F 477
 SPELLCHK 479
 SPIE 481
 SPRINT 485
 SPUNCH 487
 SRCHI488.1
 STARTF 489
 STDDMP 491
 SVCTRP 492.1
 SYSTEM 493
 TAPEINIT 495
 TICALL 499

 9

 MTS 3: System Subroutine Descriptions

 April 1981

 10

 MTS 3: System Subroutine Descriptions

 April 1981

 USING SUBROUTINE LIBRARIES __________________________

 The Computing Center maintains a number of subroutine libraries in
 public files. In addition, the user can construct and use his own
 libraries.

 The loader will selectively load subroutines from both user and
 system libraries as follows:

 (1) All libraries explicitly specified on the $RUN command are __________
 processed.

 (2) If, after all files explicitly specified on the $RUN command are
 processed, there remain unresolved subroutine calls, the loader
 will search implicitly specified libraries if the LIBR option is __________
 ON (the default) as follows:

 a. The loader will implicitly search any private libraries
 specified via the $SET LIBSRCH=FDname command. The default
 setting for the LIBRSRCH option is OFF, in which case no user
 libraries are implicitly searched.
 b. If, after implicitly searching all user libraries, there
 remain unresolved subroutine calls, the system will implicit-
 ly search *LIBRARY and the resident system library if the
 *LIBRARY option is ON (the default).

 (3) If, after all implicitly specified libraries have been searched,
 there remain unresolved subroutine calls, a terminal user will
 be prompted for more input; a batch user will be given an error
 return from the loader.

 The default settings for LIBR, LIBSRCH, and *LIBRARY are such that, for
 example, issuing the command

 $RUN -LOAD+*PL1LIB

 will cause the loader to go through the following steps:

 (1) The object modules in the file -LOAD are loaded and linked
 together.

 (2) Object modules are selectively loaded from *PL1LIB (since it is
 a library) to resolve external symbols (i.e., subroutine names)
 from -LOAD.

 (3) Finally, if there are still unresolved external symbols, *LI-
 BRARY and the resident system library are searched for the
 appropriate object modules.

 Using Subroutine Libraries 11

 MTS 3: System Subroutine Descriptions

 April 1981

 Note that this concatenation can be implicit as well as explicit.
 Instead of specifying

 $RUN OBJ+*PL1LIB

 the user could specify

 $CONTINUE WITH *PL1LIB

 as the last line in the file OBJ and then specify

 $RUN OBJ

 to get the same effect.

 The dynamic loader’s library facility consists of four control
 records, namely LCS, LIB, RIP, and DIR records (named because the
 records have LCS, LIB, RIP, or DIR, respectively, in columns 2 to 4 of
 the record). The LCS record causes symbols which are referenced but not
 yet defined to be defined from a resident system table if they exist
 there. The LIB record loads selectively the object module which follows
 it or to which the LIB record points only if the module name has been
 referenced but not yet defined. The RIP record handles forward
 references and multiple entry point problems in the one-pass library
 scan. The DIR record is used to facilitate the loading of modules
 stored in a sequential file.

 A library consists of the object modules the user desires in his
 library together with the library control records necessary to define
 the module names, entry points, and references for the selective loading
 feature of the loader. Although the user can construct such a library
 himself by inserting appropriate library control records in both his
 object modules, this task has proven formidable enough with large
 libraries that a program has been written to analyze the object modules
 for a library and generate the library complete with all library control
 records. A description of this program, *OBJUTIL, is given in the
 section "The Object-File Editor" in MTS Volume 5, System Services. A ________________
 description of the format of library control records is given in the
 section "The Dynamic Loader" in MTS Volume 5.

 12 Using Subroutine Libraries

 MTS 3: System Subroutine Descriptions

 April 1981

 SUBROUTINES LIBRARIES AVAILABLE IN MTS ______________________________________

 The following is a list of the public files that contain subroutine
 libraries:

 *LIBRARY

 All subroutines that are contained in *LIBRARY are described in
 this volume except for the IOH subroutines which are described
 in the section "IOH" in MTS Volume 14, 360/370 Assemblers in _____________________
 MTS. ___

 *PL1LIB
 *PL1OPTLIB

 These files contain subroutines needed to support PL/I programs.
 A few of these which were added or modified by the Computing
 Center are described in MTS Volume 7, PL/I in MTS. The _____________
 remainder are described in the IBM publications IBM System/360 _______________
 Operating System PL/I (F) Programmer’s Guide, form number ___
 GC28-6594, and IBM System/360 Operating System, PL/I Subroutine ___
 Library, Computational Subroutines, form number GC28-6590. __________________________________

 *PL360LIB

 This file contains subroutines to support the external proce-
 dures READ, WRITE, PUNCH, and PAGE for PL360 programs.

 *SLIP

 The SLIP (Symmetric List Processor) subroutine package is an
 implementation of Joseph Weizenbaum’s IBM 7090 SLIP language.
 The description of SLIP is given in the section "SLIP" in MTS
 Volume 8, LISP and SLIP in MTS. ____________________

 *WATLIB

 This file contains WATFOR-coded functions and subroutines for
 use with WATFIV programs. The description of WATFIV is given in
 the section "WATFIV" in MTS Volume 6, FORTRAN in MTS. ______________

 *CSMPLIB
 *GASP
 *GPSSLIB
 *SIM2LIB

 These files contain library modules for use with the CSMP, GASP,
 GPSS, and SIMSCRIPT2 simulation languages.

 Subroutine Libraries Available in MTS 13

 MTS 3: System Subroutine Descriptions

 April 1981

 *ALGOLLIB
 *KDFLIB

 These files contain subroutines for use with the ALGOL language.

 *SPITLIB

 This file contains the execution-time support routines for
 object programs produced by *SPITBOL.

 *PLOTSYS

 This file contains the subroutines for use with the Plot
 Description System (PDS). The description of the Plot Descrip-
 tion System is given in MTS Volume 11, Plot Description System. _______________________

 *IG

 This file contains the subroutines for use with the Integrated
 Graphics (IG) system. The description of IG is given in MTS
 Volume 17, Integrated Graphics System. __________________________

 *ALGOLWLIB

 This file contains subroutines for use with the ALGOL W
 language. The description of ALGOL W is given in MTS Volume 16,
 ALGOL W in MTS. ______________

 *APLLIB

 This file contains subroutines for use with the General Motors
 Associative Programming Language (APL).

 *XPLIBRARY
 *EXPLIB

 These files contain subroutines for use with the XPL and
 extended XPL languages.

 *COBLIB

 This file contains subroutines for use with the COBOL language.

 *PASCALJBLIB
 *PASCALJBINCLUDE
 *PASCALJBSYSLIB
 *PASCALVSLIB
 *PASCALVSINCLUDE
 *PASCALVSSYSLIB

 These files contain subroutines for use with the PASCAL/VS and
 PASCAL/JB languages.

 14 Subroutine Libraries Available in MTS

 MTS 3: System Subroutine Descriptions

 April 1981

 One subroutine library is available under the Computing Center ID
 OLD.

 OLD:LIBRARY

 This file contains subroutines that were once contained in
 *LIBRARY. These subroutines are no longer supported by the
 Computing Center.

 Several subroutine libraries are available under the Computing Center
 ID NAAS. These are used for numerical analysis applications. They are
 the following:

 NAAS:NAL

 This file contains a package of general numerical analysis
 subroutines.

 NAAS:EISPACK

 This file contains a package of eigensystem subroutines deve-
 loped by the Argonne National Laboratory.

 NAAS:FUNPACK

 This file contains a package of special function subroutines
 developed by the Argonne National Laboratory.

 NAAS:IMSL

 This file contains a package of single-precision subroutines
 from International Mathematical and Statistical Libraries, Inc.

 NAAS:IMSL/D

 This file contains a package of double-precision subroutines
 from International Mathematical and Statistical Libraries, Inc.

 NAAS:OLDLIB

 This file contains the mathematical subroutines that were once
 contained in *LIBRARY.

 The NAAS and IMSL subroutine packages are fully described in Computing
 Center Memos 407 and 442.

 Several subroutine libraries are available under the Computing Center
 ID UNSP. They are the following:

 UNSP:LIBRARY

 This file contains a collection of FORTRAN-callable subroutines.

 Subroutine Libraries Available in MTS 15

 MTS 3: System Subroutine Descriptions

 April 1981

 UNSP:PL1LIB

 This file contains a collection of PL/I-callable subroutines.

 UNSP:SPITLIB

 This file contains a collection of functions callable from
 SNOBOL4 or SPITBOL programs.

 UNSP:LSLIPLIB

 This file contains the single-precision version of the SLIP
 subroutines.

 UNSP:DIGLIB

 This file contains a device-independent graphics system.

 For more detailed information on these subroutine libraries, see the
 UNSP descriptions in the documentation racks at the Computing Center and
 NUBS.

 The ID UNSP is part of an effort to gather a number of unsupported
 programs and subroutines into one location. This unsupported software
 is being made available under UNSP rather than in public files because
 the Computing Center does not have the resources (people, time, or
 money) to completely ensure its quality or to provide continuing
 maintenance. Many of these programs and subroutines represent interim
 solutions to particular problems which will be replaced with supported
 software as better solutions are developed.

 As the name UNSP suggests, this software is not actively supported by
 the Computing Center Staff. This means that there are no guarantees to
 its reliability, performance, or continued availability, no counseling
 is available beyond that normally provided for user programs, and no
 rebates will be given for errors caused by the operation of unsupported
 software. (It should be noted, however, that before any software is
 made available under UNSP, a member of the Computing Center staff will
 have done minimal testing and determined that the programs does what it
 claims to do for the common cases.) The file UNSP:CATALOG may be copied
 to obtain a list of the programs and subroutines currently available
 together with a short description and directions for obtaining addition-
 al documentation.-

 16 Subroutine Libraries Available in MTS

 MTS 3: System Subroutine Descriptions

 April 1981

 SUBJECT CATEGORIES OF SUBROUTINES _________________________________

 In an effort to aid users in finding subroutines that may be useful
 in their work, a number of subject categories have been defined. Each
 category consists of a type of activity a user might be doing. Under
 each category is listed the name of the appropriate subroutine descrip-
 tion, the purpose of the subroutine, and whether the subroutine is
 callable by an S-type or R-type calling sequence.

 Character and Numeric Conversion

 ASCEBC,IASCEBC
 USASCII to EBCDIC translation Table
 BINEBCD Binary input to EBCDIC translation R-type
 BINEBCD2 Binary input to EBCDIC translation R-type
 EBCASC,IEBCASC
 EBCDIC to USASCII translation Table
 IOH Numeric input/output conversion R-type
 SIOC Numeric input/output conversion S-type
 SIOCP Numeric input/output conversion S-type
 TRLCUC,TRUCLC
 Lowercase-uppercase conversion Table
 TRTLC,TRTUC,TRTNONAM
 Lowercase-uppercase detection Table
 Translation Routines
 Lowercase-uppercase conversion and
 USASCII-EBCDIC conversion S-type

 Date and Time Conversion

 GRGJULDT Gregorian to Julian date and time R-type
 GRGJULTM Gregorian to Julian time R-type
 GRJLDT Gregorian to Julian date and time S-type
 GRJLSEC Gregorian to Julian time R-type
 GRJLTM Gregorian to Julian time S-type
 GROSDT Gregorian to OS date S-type
 GTDJMS Gregorian to Julian date and time S-type
 GTDJMSR Gregorian to Julian time R-type
 JLGRDT Julian to Gregorian date and time S-type
 JLGRSEC Julian to Gregorian time R-type
 JLGRTM Julian to Gregorian time S-type
 JMSGTD Julian to Gregorian date and time S-type
 JMSGTDR Julian to Gregorian date and time R-type
 JTUGTDR Julian to Gregorian date and time R-type

 Subject Categories of Subroutines 19

 MTS 3: System Subroutine Descriptions

 April 1981

 JULGRGDT Julian to Gregorian date and time R-type
 JULGRGTM Julian to Gregorian time R-type
 OSGRDT OS to Gregorian date S-type
 TIME Get time of day, CPU and elapsed time S-type
 Time Routines
 General time and date conversion S-type

 File and Device Usage

 ANSI File Routines
 File control for FORTRAN programs S-type
 CATSCAN Scan the system catalog S-type
 CFDUB Compare FDUB-pointers S-type
 CHGFSZ Change file size S-type
 CHGMBC Change number of file buffers S-type
 CHGXF Change file expansion factor S-type
 CHKACC Check access to file S-type
 CHKFDUB Get a FDUB-pointer for a file S-type
 CHKFILE Determine existence of a file S-type
 CLOSEFIL Close a file S-type
 CNTLNR Count number of lines in a file S-type
 CREATE Create a file S-type
 DESTROY Destroy a file S-type
 EDIT Edit a file S-type
 EMPTY Empty a file R-type
 EMPTYF Empty a file S-type
 FILEINFO Get file information S-type
 FNAMETRT Check for legal file name Table
 FREEFD Free a file or device R-type
 FSIZE Determine size required for a file S-type
 FSRF,BSRF Forward and backspace records in a file S-type
 GDINF Get file information S-type
 GDINFO Get file or device information R-type
 GDINFO2 Get file or device information R-type
 GDINFO3 Get file or device information R-type
 GETFD Get a file or device R-type
 GETFST,GETLST
 Get first and last line numbers of a line file S-type
 GFINFO Get file and catalog information S-type
 LETGO Periodically unlock and lock a file S-type
 LOCK Lock a file S-type
 LSFILE Get locking status information for file S-type
 LSTASK Get locking status information for task S-type
 NOTE Remember sequential file pointers S-type
 PERMIT Permit a file S-type
 PKEY Push or pop program key S-type
 POINT Change sequential file pointers S-type
 RENAME Rename a file S-type
 RENUMB Renumber a file S-type
 RETLNR Return line numbers of a file S-type
 REWIND Rewind a logical I/O unit S-type

 20 Subject Categories of Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 REWIND# Rewind a file or magnetic tape R-type
 RSSAS Reset *SOURCE* and *SINK* S-type
 SETFSAVE Enable or disable file saving S-type
 SETKEY Set program key for a file S-type
 SETLNR Set line numbers of a file S-type
 TOUCH Update the last data-change time for a file S-type
 TRUNC Truncate a file S-type
 UNLK Unlock a file S-type
 WRITEBUF Write file buffers S-type

 FORTRAN Usage

 ADROF Get address of a FORTRAN variable S-type
 ANSI Bit Routines
 Bit manipulation for FORTRAN programs S-type
 ANSI File Routines
 File control for FORTRAN programs S-type
 Array Management Routines
 Array processing for FORTRAN S-type
 ATNTRP Attention interrupt processing S-type
 Bitwise Logical Functions
 FORTRAN bitwise logical functions S-type
 BMS Routines
 Bit manipulation for FORTRAN programs S-type
 Character Manipulation Routines
 Character processing for FORTRAN S-type
 CHKPAR Check parameters to a subroutine S-type
 DUMP,PDUMP Dump storage S-type
 FREAD,FWRITE
 Free-format input/output S-type
 FTNCMD Execute FORTRAN I/O library command S-type
 GDINF Get file information S-type
 GRJLDT Gregorian to Julian date and time S-type
 GRJLTM Gregorian to Julian time S-type
 GTDJMS Gregorian to Julian date and time S-type
 JLGRDT Julian to Gregorian date and time S-type
 JLGRTM Julian to Gregorian time S-type
 JMSGTD Julian to Gregorian date and time S-type
 LINKF Dynamic loading S-type
 LOADF Dynamic loading S-type
 Logical Operators
 FORTRAN logical machine operations S-type
 NPAR Count parameters to a subroutine S-type
 RCALL R-type call from FORTRAN S-type
 REWIND Rewind a logical I/O unit S-type
 SIOERR I/O error processing S-type
 STARTF Dynamic loading S-type
 TICALL Timer interrupt processing S-type
 UNLDF Dynamic unloading S-type

 Subject Categories of Subroutines 21

 MTS 3: System Subroutine Descriptions

 April 1981

 Input/Output Routines

 Blocked I/O Routines
 Read and write blocked records S-type
 FREAD,FWRITE
 Free-format input/output S-type
 GUSER Read from logical I/O unit GUSER S-type
 LIOUNITS Table of valid logical I/O units R-type
 READ Read a record S-type
 READBFR Read without knowing length R-type
 REWIND Rewind a logical I/O unit S-type
 REWIND# Rewind a magnetic tape or file R-type
 SCARDS Read from logical I/O unit SCARDS S-type
 SERCOM Write on logical I/O unit SERCOM S-type
 SETIOERR I/O error processing R-type
 SETLIO Set logical I/O unit S-type
 SIOERR I/O error processing S-type
 SPRINT Write on logical I/O unit SPRINT S-type
 SPUNCH Write on logical I/O unit SPUNCH S-type
 WRITE Write a record S-type

 Interrupt Processing

 ATNTRP Attention interrupt processing S-type
 ATTNTRP Attention interrupt processing R-type
 GETIME Timer interrupt processing S-type
 PGNTTRP Program interrupt processing R-type
 RSTIME Timer interrupt processing S-type
 SETIME Timer interrupt processing S-type
 SETLCL To set a local time limit S-type
 SPIE Program interrupt processing R-type
 TICALL Timer interrupt processing S-type
 TIMNTRP Timer interrupt processing R-type
 TWAIT Timer interrupt processing S-type

 Status of User and System

 CANREPLY Terminal or batch status S-type
 CNFGINFO Get system configuration information Table
 COST Get cost of current signon S-type
 CUINFO Change user status information S-type
 GPRJNO Get user project number R-type
 GUINFO Get user status information S-type
 GUINFUPD Update user status information R-type
 GUSERID Get user ccid S-type
 LOADINFO Get symbol or address information S-type

 22 Subject Categories of Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 System Utilities

 BLOKLETR Produce block letters S-type
 CALC Call $CALC routines S-type
 CHARGE To compute charges for computer resources S-type
 CMD Execute an MTS command S-type
 CMDNOE Execute an MTS command without echoing S-type
 COMMAND Execute an MTS command S-type
 CONTROL Execute a device support operation S-type
 CRYPT Encrypt or decrypt data S-type
 DISMOUNT Dismount a tape S-type
 ERROR Terminate execution with error S-type
 GRAND Normally distributed random number S-type
 IBSCH Binary searching S-type
 KWSCAN Keyword processing R-type
 MOUNT Mount a tape S-type
 MTS Return to MTS command mode S-type
 MTSCMD Return to MTS and execute a command S-type
 Printer Plot Routines
 Produce plots S-type
 QUIT Signoff user at next MTS command S-type
 SETLIO Assign logical I/O units S-type
 SETPFX Set prefix character S-type
 SKIP Space a magnetic tape S-type
 SORT Sort and merge records S-type
 SORT2 Sort vectors S-type
 SORT3 Sort vectors S-type
 SPELLCHK Spelling check S-type
 SRCHI Binary searching S-type
 SYSTEM Terminate execution S-type
 URAND Uniformly distributed random number S-type
 Xerox 9700 Font Routines
 Get Xerox 9700 font information S-type

 Virtual Memory Management

 DUMP,PDUMP Dump storage S-type
 FREESPAC Release storage S-type
 GETSPACE Acquire storage S-type
 GPSECT, FPSECT, QPSECT
 Psect storage management R-type
 LINK Dynamic loading R-type
 LINKF Dynamic loading S-type
 LOAD Dynamic loading R-type
 LOADF Dynamic loading S-type
 LOADINFO Get loader table information S-type
 LODMAP Produce loader map S-type
 SCANSTOR Scan storage blocks R-type
 SDUMP Dump storage and registers R-type
 STARTF Dynamic loading S-type
 STDDMP Dump storage R-type

 Subject Categories of Subroutines 23

 MTS 3: System Subroutine Descriptions

 April 1981

 UNLDF Dynamic unloading S-type
 UNLOAD Dynamic unloading R-type
 XCTL Dynamic loading R-type
 XCTLF Dynamic loading S-type

 24 Subject Categories of Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 CALLING CONVENTIONS ___________________

 INTRODUCTION ____________

 A calling convention is a very rigid specification of the sequence of
 instructions to be used by a program to transfer control to another
 program (usually referred to as a subroutine). It is very desirable,
 although not always practical, to set up only one set of conventions to
 be used by all programs no matter what language they are written in so
 that FORTRAN programs may call assembly language programs and so forth.
 In MTS, the OS type I calling conventions have been adopted as the
 standard. A complete specification of these standards can be found in
 the IBM publication, OS/360 System Supervisor Services and Macro __
 Instructions, form number GC28-6646. This description will attempt to ____________
 bring out the pertinent details of these calling conventions.

 Throughout this discussion we will refer to the terms calling _______
 program, called program, save area, and calling sequence. The calling _______ ______ _______ ____ ____ _______ ________ _______
 program is the program which is in control and wants to call another _______
 program (subroutine). The called program is the program (subroutine) ______ _______
 which the calling program wants to call. The save area is an area ____ ____
 belonging to the calling program which the called program uses to save
 and later restore general-purpose registers. The save area has a very
 rigid format and is discussed in more detail later on. A calling _______
 sequence is the actual sequence of machine instructions which perform ________
 the tasks as specified by the calling conventions.

 The facilities that must be provided by the calling conventions are:

 (1) Establish addressability and transfer to the entry point.
 (2) Pass parameters on to the called program.
 (3) Pass results back to the calling program.
 (4) Save and restore general-purpose and floating-point registers.
 (5) Reestablish addressability and return to the calling program.
 (6) Pass a return code (error indication) back to the calling
 program so it knows how things went.

 The remainder of this description will describe the OS type I calling
 conventions to show how they are used and how the facilities listed
 above are provided for.

 REGISTER AND STORAGE VARIANTS OF CALLS ______________________________________

 The OS type I calling conventions actually consist of two very
 similar calling conventions, referred to as S-type calling conventions
 and R-type calling conventions. The two differ only in the way

 Calling Conventions 25

 MTS 3: System Subroutine Descriptions

 April 1981

 parameters and results are passed between the calling and called _______ ______
 programs. The R refers to register and the S to storage. _ ________ _ _______

 The R-type calling conventions utilize the general-purpose registers
 0 and 1 for passing parameters and results. This allows only two
 parameters or results and cannot be generated in higher-level languages
 such as FORTRAN. Its advantages are that calling sequences are shorter
 and take less time to set up. These are very popular in lower-level
 system subroutines such as GETSPACE or GETFD. FORTRAN users needing to
 call subroutines that utilize R-type calling conventions can use the
 RCALL subroutine described in this volume.

 The S-type calling conventions require a pointer to a vector of
 address constants called a parameter list (in register 1). Since the
 parameter list can be of any required length, several parameters can be
 passed using S-type calling convention. These conventions are used by
 system subroutines such as SCARDS or LINK and are generated by all
 function or subprogram references in FORTRAN. Results can be passed
 back by giving variables in the parameter list new values or via
 register 0.

 PARAMETER LISTS _______________

 As stated above, a parameter list is a vector of address constants.
 The parameter list must be on a fullword boundary and the entries are
 each four bytes long. The address of the first parameter is the first
 word of the list, the address of the second parameter the second word of
 the list, and so on. For example, the parameter list for the FORTRAN
 statement

 CALL QQSV(X,Y,Z)

 might be written in assembly code as:

 PAR DC A(X) address of X
 DC A(Y) address of Y
 DC A(Z) address of Z

 Now this parameter list works well enough when the parameter list for
 the subroutine is of fixed length, but there is not enough information
 yet to allow a subroutine to determine the length of the parameter list
 and hence accept variable-length parameter lists. For this reason there
 are two types of parameter lists, fixed-length parameter lists as ____________ _________ _____
 described above, and an extended form of parameter list called a
 variable-length parameter list which is described next. _______________ _________ ____

 Since a standard System/360/370 computer uses 24-bit storage
 addresses, the left-most byte of an address constant is usually zero.
 In a variable-length parameter list, bit zero of the left-most byte of
 the last parameter address constant is set to 1 to show that it is the ____
 last item in the list. The example above then would be written as:

 26 Calling Conventions

 MTS 3: System Subroutine Descriptions

 April 1981

 PAR DC A(X) address of X
 DC A(Y) address of Y
 DC XL1’80’ turn on bit zero
 DC AL3(Z) address of Z

 if it generated a variable-length parameter list, as FORTRAN does. Note
 though that programs expecting a fixed-length parameter list will work
 with a variable-length parameter list, provided it is at least as long
 as the fixed-length list the program is expecting, since it extracts
 only the address part when it uses the parameters.

 REGISTER ASSIGNMENTS ____________________

 Of the sixteen general-purpose registers, five are assigned for use
 in the calling conventions. The use of the general registers differs
 slightly depending upon whether an R- or S-type call is being made.
 Table 1 specifies exactly what each register is used for during a call.

 Notice that it is the called program’s responsibility to save and
 restore registers 2-12 in the save area provided by the calling program.
 There are two reasons for this. First, only the called program knows
 how many of the registers from 2-12 it is going to use. Since a
 register need be saved and restored only if it is actually going to be
 changed, the called program may be able to save some time by saving and
 restoring only those registers which it will use. Secondly, the called
 program requires addressability over the area in which it will save
 registers upon entry, since any attempt to acquire the address of a save
 area would destroy some of the registers which are to be saved.
 Furthermore, the save area should not be a part of the called program
 since that would prevent it from being reentrant (shareable). This
 means the calling program should provide the save area in which
 registers are saved and restored. And so we have the called program
 saving and restoring registers 2-12 in a save area provided by the
 calling program.

 The calling conventions are quite different with floating-point
 registers. Since a large percentage of programs do not leave items in
 floating-point registers across subroutine calls it seems rather waste-
 ful to always save and restore the floating-point registers. So the
 convention has been established that the calling program must save and _______
 restore those floating-point registers that contain items which are
 wanted. Also, programs that return a single floating-point result quite
 frequently do so via floating-point register 0.

 Calling Conventions 27

 MTS 3: System Subroutine Descriptions

 April 1981

 ┌──┐ ┌
 |Register Number | Contents |
 |────────────────┼───| ┌ ┘
0	Parameter to be passed in R-type sequences.
	Result to be passed back in R- and S-type
	sequences.
────────────────┼───	┌ ┘
1	Parameter to be passed in R-type sequences.
	Address of a parameter list in S-type sequences.
────────────────┼───	┌ ┘
2-12	Not used as a part of the calling sequence. Must
	be saved and restored by the called program. The
	save area is usually used for this.
────────────────┼───	┌ ┘
13	The address of the save area provided by the
	calling program to be used by the called program.
────────────────┼───	┌ ┘
14	Address of the location in the calling program to
	which control should be returned after execution of
	the called program.
────────────────┼───	┌ ┘
15	Address of the entry point in the called program at
	the time of the call.
	A return code at the time of the return that
	indicates to the calling program whether or not an
	exceptional condition occurred during processing of
	the called program. The return code should be zero
	for a normal return or a multiple of four for
	various exceptional conditions.
 └──┘ ┘

 Table 1: General-Purpose Register Conventions

 RETURNING RESULTS _________________

 There are in the calling conventions four ways in which a subroutine
 can return a result. These are:

 (1) Value of result in general-purpose register 0.
 (2) Value of result in general-purpose register 1.
 (3) Value of a result in floating-point registers (usually FR0).
 (4) Value of a parameter from the parameter list changed.

 The particular method used depends upon whether the R- or S-type
 convention is used and whether the called program can be used as a
 function in arithmetic statements.

 28 Calling Conventions

 MTS 3: System Subroutine Descriptions

 April 1981

 The first three methods are used by R-type calling conventions for
 all returned results. The contents of each of the registers depends
 upon the particular called program and are described in the subroutine
 description for each subroutine using the R-type calling conventions.

 The first, third, and fourth methods are used by S-type calling
 conventions for all returned results. The first and third methods are
 used by function subprograms whose calls can be embedded in FORTRAN
 statements. The choice of general register 0 or floating-point register
 0 depends upon whether the result returned is integer or floating-point,
 respectively. An example would be a function subprogram called by the
 statement

 SUM = ADD(A,B)

 which adds the floating-point variables A and B and returns the
 floating-point result in floating-point register 0 which is then
 assigned to SUM. The fourth method can be used by a subroutine call.
 The above function subprogram ADD could be changed to a subroutine
 called by the statement

 CALL ADD(A,B,SUM)

 which adds A and B and returns the result in SUM by means of the
 parameter list instead of using floating-point register 0.

 The return code cannot be checked by a FORTRAN program if the
 subprogram is called by the first or third method. Only the fourth
 method allows the return code to be checked. This is done by including
 statement labels in the parameter list indicating the statements to
 branch to if the corresponding return codes occur. For example, a
 return from the subroutine ADD when called by the statement

 CALL ADD(X,Y,SUM,&10)

 will be to statement number 10 if the return code in general register 15
 is 4.

 SAVE AREA FORMAT ________________

 The save area is an area belonging to the calling program which the _______
 called program uses to save and later restore general-purpose registers. ______
 The address of the save area is passed to the called program by the
 calling program via general-purpose register 13. The save area has a
 very rigid format and is described in Table 2.

 Calling Conventions 29

 MTS 3: System Subroutine Descriptions

 April 1981

 ┌──┐ ┌ ┌
 | Word | Displacement | Contents |
 |──────┼──────────────┼──| ┌ ┘
 | 1 | 0 | Used by FORTRAN, PL/I, and other beasties |
 | | | for many devious purposes. Don’t touch! |
 |──────┼──────────────┼──| ┌ ┘
 | 2 | 4 | Address of the save area used by the calling |
 | | | program. Forms a backward chain of save |
 | | | areas. Stored by calling program. |
 |──────┼──────────────┼──| ┌ ┘
 | 3 | 8 | Address of the save area provided by the |
 | | | called program for programs it calls. Forms |
 | | | a forward chain of save areas. |
 |──────┼──────────────┼──| ┌ ┘
 | 4 | 12 | Return address. Contents of register 14 at |
 | | | time of call. |
 |──────┼──────────────┼──| ┌ ┘
 | 5 | 16 | Entry point address. Contents of register |
 | | | 15 at time of call. |
 |──────┼──────────────┼──| ┌ ┘
 | 6 | 20 | Register 0 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 7 | 24 | Register 1 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 8 | 28 | Register 2 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 9 | 32 | Register 3 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 10 | 36 | Register 4 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 11 | 40 | Register 5 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 12 | 44 | Register 6 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 13 | 48 | Register 7 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 14 | 52 | Register 8 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 15 | 56 | Register 9 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 16 | 60 | Register 10 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 17 | 64 | Register 11 contents. |
 |──────┼──────────────┼──| ┌ ┘
 | 18 | 68 | Register 12 contents. |
 └──┘ ┘ ┘

 Table 2: Save Area Format

 30 Calling Conventions

 MTS 3: System Subroutine Descriptions

 April 1981

 There are two things to be noted about the save area format, namely,
 who sets what parts of the save area and how these areas might be set
 up. The calling program is responsible for setting up the second word _______
 of the save area. This is to contain the address of the save area which
 was provided when the calling program was called. Although this is _______
 technically set up by the calling program as a part of the call, most
 programs set up the save area they will provide to subroutines they call
 once and leave its address in general register 13. This process then
 does not need to be repeated for each call. The called program is ______
 responsible for setting up the third through eighteenth words of the
 save area. The called program usually saves the general registers which
 it will use as a part of its initialization procedure and restores the
 registers as a part of the return procedure. Notice that the save area
 format is amenable to use of the store multiple and load multiple
 instructions for saving and restoring blocks of registers. All of this
 will be made clearer in the examples at the end of this section.

 Some system subroutines (notably GETSPACE, FREESPAC, and a few
 others) do not require that a save area be provided for them. For these
 subroutines general register 13 need not be set up before a call; its
 contents are preserved by the called subroutine. The subroutines which
 need no save area are clearly marked as such in the MTS subroutine
 descriptions. Notice that it is all right to provide a save area to one
 of these subroutine; it will simply be ignored.

 CALLING PROGRAM RESPONSIBILITIES AND CONSIDERATIONS ___

 The calling program is responsible for the following:

 (1) Loading register 13 with the address of the save area and
 setting up the second word of the save area.
 (2) Loading register 14 with the return address.
 (3) Loading register 15 with the entry point address.
 (4) Loading registers 0 and 1 with the parameters in an R-type call
 or loading register 1 with the address of the parameter list in
 an S-type call.
 (5) Saving floating-point registers, if necessary.
 (6) Transferring to the entry point of the subroutine.
 (7) Restoring floating-point registers, if necessary.
 (8) Testing the return code in register 15, if desired.

 After the return from a subroutine, the status of the program will be
 as follows:

 (1) In general, the contents of the floating-point registers will be
 unpredictable unless saved and restored by the calling program.
 (2) The contents of general registers 2 through 14 will be restored
 to their contents at the time the called program was entered.
 (3) The program mask will be unchanged.
 (4) The contents of general registers 0, 1, and 15 may be changed.
 (5) The condition code may be changed.

 Calling Conventions 31

 MTS 3: System Subroutine Descriptions

 April 1981

 Note that general registers 0 and 1 and floating-point register 0 may
 contain results in the case of R-type subroutine calls or a function
 subprogram. General register 15 will normally contain a return code,
 indicating whether or not an exceptional condition occurred during
 processing of the called program.

 CALLED PROGRAM RESPONSIBILITIES AND CONSIDERATIONS __

 The called program is responsible for the following:

 (1) Saving the contents of general registers 2 through 12 and 14 in
 the save area provided by the calling program. These registers
 need be saved only if the called program modifies these
 registers.
 (2) Setting up the third word of the save area with the address of
 the save area, which will be provided to subroutines it will
 call.
 (3) Restoring the contents of general registers 2 through 14 before
 returning to the calling program.
 (4) Restoring the program mask if changed.
 (5) Loading general registers 0 and 1 or floating-point register 0
 with the result in the case of R-type subroutine calls or a
 function subprogram.
 (6) Loading general register 15 with the return code.
 (7) Transferring to the return location.
 (8) Saving and restoring the program mask, if necessary.

 EXAMPLE CALLING SEQUENCES _________________________

 This section will describe and give the assembly language statements
 for the typical machine instructions necessary to implement the calling
 conventions.

 A typical entry point might consist of the following statements:

 USING SUBRA,12 12 will be a base register
 SUBRA STM 14,12,12(13) save registers
 LR 12,15 set up 12 as the base register
 LA 15,SAVE this is save area provided for others
 ST 15,8(0,13) set up forward pointer
 ST 13,4(0,15) set up backward pointer
 LR 13,15 set up for any calls we issue
 LR 11,1 get parameter pointer into nonvolatile
 register
 .
 .
 .
 SAVE DS 18F save area we provide for others

 32 Calling Conventions

 MTS 3: System Subroutine Descriptions

 April 1981

 Inside a subroutine that began with the entry sequence given above,
 the value of the second parameter in the parameter list could be put
 into general-purpose register 3 with the following sequence:

 .
 .
 .
 L 3,4(0,11) pick up second adcon from par list
 L 3,0(0,3) pick up value of parameter
 .
 .
 .

 Inside a subroutine that began with the entry sequence given above,
 another subroutine, SUBRB, could be called using the following sequence.
 Remember that register 13 already points to the correct save area:

 .
 .
 .
 LA 1,PARLIST set up parameter list address
 L 15,=V(SUBRB) set up entry point address
 BALR 14,15 set up return address and branch to
 the subroutine
 B *+4(15) test return code via a transfer table
 B AOK RC=0
 B BAD1 RC=4
 B BAD2 RC=8
 .
 .
 .
 AOK ... normal return to here
 .
 .
 .
 PARLIST DC A(PAR1) first parameter address
 DC A(PAR2) second parameter address
 DC A(PAR3) third parameter address
 .

 Finally, a subroutine that began with the entry sequence given above
 could return to the program that called it with the following sequence:

 LE 0,RESULT floating point result to FPR 0
 L 13,4(0,13) use back pointer to get save area
 LM 14,12,12(13) restore registers
 SR 15,15 indicate a zero return code--no errors
 BR 14 return to what called us
 .
 .
 .

 Calling Conventions 33

 MTS 3: System Subroutine Descriptions

 April 1981

 It should be pointed out that although the above sequences are
 typical of the instructions used to implement the calling conventions,
 many variations are possible.

 MACROS FOR CALLING SEQUENCES ____________________________

 There are two sets of macro definitions in the MTS macro library
 *SYSMAC which can be used to help generate calling sequences. These are
 the macros SAVE, CALL, and RETURN; and the macros ENTER and EXIT. The
 more useful of these macros are ENTER, CALL, and EXIT. Besides these
 there is a set of macros which generate the entire calling sequences for
 many of the system subroutines and IOH. For details, see the macro
 descriptions in MTS Volume 14, 360/370 Assemblers in MTS. _________________________

 The example given above is repeated below using the ENTER, CALL, and
 EXIT macros.

 SUBRA ENTER 12,SA=SAVE
 LR 11,1
 .
 .
 .
 SAVE DS 18F
 .
 .
 .
 L 3,4(0,11)
 L 3,0(0,3)
 .
 .
 .
 CALL SUBRB,(PAR1,PAR2,PAR3)
 B *+4(15)
 B AOK
 B BAD1
 B BAD2
 .
 .
 AOK ...
 .
 .
 .
 LE 0,RESULT
 EXIT 0

 The CALL macro generates its own parameter list, hence the parameter
 list specified by PARLIST in the original example need not appear in the
 macro example.

 34 Calling Conventions

 MTS 3: System Subroutine Descriptions

 April 1981

 RESIDENT SYSTEM AND *LIBRARY SUBROUTINES __

 This section contains descriptions of the subroutines that are a part
 of the resident system or are contained in the public file *LIBRARY.

 Each of these subroutines is called with either the standard S-type
 calling sequence (such as FORTRAN uses) or the R-type calling sequence.
 Both types of calling sequences are described in the section "Calling
 Conventions" in this volume.

 Resident System and *LIBRARY Subroutines 35

 MTS 3: System Subroutine Descriptions

 April 1981

 36 Resident System and *LIBRARY Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 ADROF _____

 Subroutine Description

 Purpose: To return the address of a FORTRAN variable.

 Location: *LIBRARY

 Alt. Entry: IADROF

 Calling Sequences:

 FORTRAN: x = ADROF(var)

 Parameters:

 var is the location of the variable name whose ___
 address is to be returned. If the variable name
 is a character string which is intended to be
 used as an FDname, it should be terminated with
 a trailing blank.

 Values Returned:

 GR0 will contain the address of the variable. In a
 FORTRAN call, this address will be returned in x. _

 Note: In FORTRAN, ADROF should be declared as an
 INTEGER*4 function. ADROF is intended for use
 with RCALL to compute addresses as necessary in
 calling R-type subroutines (see the RCALL sub-
 routine description in this volume).

 Example: FORTRAN: INTEGER*4 RESULT,ADROF
 ...
 RESULT = ADROF(’FDname ’)

 This example returns the address of the character string
 "FDname" in the variable RESULT.

 ADROF 37

 MTS 3: System Subroutine Descriptions

 April 1981

 38 ADROF

 MTS 3: System Subroutine Descriptions

 April 1981

 ANSI Standard Bit Manipulation Subroutines __

 Subroutine Description

 This set of subroutines contains procedures for bit manipulation with
 integers and date/time functions as described in ANSI/ISA-S61.1, Indus- ______
 trial Computer System FORTRAN Procedures for Executive Functions, __
 Process Input/Output, and Bit Manipulation, as well as additional bit __
 manipulation functions as described in Military Standard 1753, FORTRAN, ________
 DOD Supplement to American National Standard X3.9-1978. Other subrou- __
 tines described in ANSI/ISA-S61.1, the executive interface and the
 process input/output function interfaces, do not apply to the MTS
 environment and thus are not implemented.

 These subroutines are intended to allow FORTRAN programs written for
 other systems that provide subroutines implementing the same standards
 to be run in MTS with little or no modification, and to facilitate the
 development in MTS of FORTRAN programs intended for use on such systems.

 The following subroutines are available in *LIBRARY:

 Subroutine Function __________ ________

 IOR Inclusive OR of the bits in two integers.
 IAND Logical AND of two integers.
 IEOR Exclusive OR of two integers.
 NOT Logical complement of an integer.
 ISHFT Shift bits right or left (noncircular).
 BTEST Test a specific bit.
 IBSET Set a bit to one.
 IBCLR Clear a bit to zero.
 ISHFTC Circular shift of some or all of the bits in an
 integer.
 IBITS Extract a bit substring.
 MVBITS Move bits from one integer to another.
 DATE Return current date.
 ANSITM Return current time.

 The ANSITM subroutine is named TIME in the standard. However, since
 there is a different MTS subroutine named TIME, a different name had to
 be chosen for the ANSI subroutine. The object-file editor can be used
 to change calls to TIME to calls to ANSITM (see the ANSITM description
 for an example).

 Although these subroutines were intended for FORTRAN programs in the
 standard, they may be called from any programming language that uses the
 standard IBM OS S-type linkage conventions.

 The complete description of these subroutines is given in MTS Volume
 6, FORTRAN in MTS. ______________

 ANSI Standard Bit Manipulation Subroutines 38.1

 MTS 3: System Subroutine Descriptions

 April 1981

 38.2 ANSI Standard Bit Manipulation Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 ANSI Standard File Control Subroutines ______________________________________

 Subroutine Description

 This set of subroutines contains procedures for file control as
 described in ANSI/ISA-S61.2, Industrial Computer System FORTRAN Proce- ___
 dures for File Access and the Control of File Contention. __

 These subroutines are intended to allow FORTRAN programs written for
 other systems, which provide subroutines implementing the same stan-
 dards, to be run under MTS with little or no modification, and to
 facilitate the development under MTS of FORTRAN programs intended for
 use on such systems.

 The following subroutines are available in *LIBRARY:

 Subroutine Function __________ ________

 CFILW Create a file
 DFILW Destroy a file
 OPENW Open a file
 CLOSEW Close a file
 MODAPW Modify access privileges for an open file
 RDRW Read a record from a file
 WRTRW Write a record to a file

 Note: These subroutines only provide for direct access to files.

 The following list describes all extensions to and incompatibilities
 with the standard.

 (1) The standards make no specific mention of the handling of calls
 with invalid parameters. In this implementation, the return
 code for each subroutine is set to indicate the type of error
 detected.
 (2) File names are not covered by the standards, but left dependant
 on the processor. These subroutines expect file names to be
 standard MTS file names, terminated by a blank space. (This can
 be effected in full accord with the standard by using integer
 arrays initialized to contain the file names.)
 (3) The standards permit concurrently executing programs to write to
 the same file and allow one program to read a file while a
 concurrent program is writing to it; under MTS such access is
 not possible. Therefore, a program requesting write access to a
 file will receive it only if no other program is accessing the
 file in any way.
 (4) The standards specify that an open file is attached to a
 particular unit, and use the unit number to identify the file.
 These subroutines make use of the unit numbers as specified, but
 do not actually associate the units with the MTS logical I/O
 units. Thus, it would be possible to have a file open under the
 ANSI file subroutines, attached to unit 5, and to have a

 ANSI Standard File Control Subroutines 38.3

 MTS 3: System Subroutine Descriptions

 April 1981

 different file open and attached to MTS unit 5. Note also that
 MTS logical I/O units run from 0 to 99, while the ANSI
 subroutines allow the unit number to be any integer.
 (5) A file that is open may be destroyed. This might cause an error
 return if I/O is subsequently attempted to the file.

 The complete description of these subroutines is given in MTS Volume
 6, FORTRAN in MTS. ______________

 38.4 ANSI Standard File Control Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 Array Management Subroutines ____________________________

 Subroutine Description

 Purpose: The array management subroutine (AMS) package permits
 FORTRAN users to create, extend, and erase 1- and
 2-dimensional arrays at execution time.

 Location: *LIBRARY

 Description: Any program or subroutine which references an array
 created by AMS must include an appropriate subset of the
 following statements:

 LOGICAL*1 $L1(1)
 LOGICAL*4 $L4(1)
 INTEGER*2 $I2(1)
 INTEGER*4 $I4(1)
 REAL*4 $R4(1)
 REAL*8 $R8(1)
 COMPLEX*8 $C8(1)
 EQUIVALENCE ($L1(1),$L4(1),$I2(1),$I4(1),$R4(1),
 $R8(1),$C8(1))
 COMMON /$/ $I4

 The above statements establish a set of names called base ____
 names, all of which reference the same address in memory. _____

 An ordinary FORTRAN array element is addressed in the
 form:

 array name(index)

 An AMS array element is addressed in the form:

 base name(array name + index)

 where the base name should match the FORTRAN type of the
 array. For example, an INTEGER*4 FORTRAN array named
 ALPHA might be referenced as ALPHA(I). An AMS array of
 the same name and type should be referenced as $I4(ALPHA+
 I). If the array type is REAL*8, it should be referenced
 as $R8(ALPHA+I) and so on for the other array types.

 Other base names may be used instead, but the above names
 are recommended as they serve to remind the user of the
 type of array being referenced. Starting the base names
 with a dollar sign ($) serves to make references to these
 arrays conspicuous in the program listing. Base names
 need not be defined for any array types not used by the

 Array Management Subroutines 39

 MTS 3: System Subroutine Descriptions

 April 1981

 program, except that an INTEGER*4 base must be named and
 passed in COMMON /$/ even if the user creates no INTEGER*4
 arrays.

 If the above declarations are properly made, then an AMS
 array may be passed to a subroutine merely by passing its
 array name, either as an argument or in COMMON.

 The user-callable subroutines in AMS are:

 Name | Purpose
 -------|--------------------------------
 ARINIT | to initialize AMS
 ARRAY | to create a 1-dimensional array
 ARRAY2 | to create a 2-dimensional array
 EXTEND | to extend a 1-dimensional array
 XTEND2 | to extend a 2-dimensional array
 ERASE | to erase a single array
 ERASAL | to erase all arrays

 All arguments passed to and returned by these routines
 must be INTEGER*4 values.

 AMS calls in turn the MTS subroutines GETSPACE, FREESPAC,
 IMVC and ADROF.

 Note to users who are doing dynamic program loading via
 LINKF, LOADF, and XCTLF: the storage obtained by AMS will
 be associated with the highest level program and will not
 be released until execution is terminated. To release
 unwanted arrays call ERASE or ERASAL.

 Warning: The subroutines will not work properly if called
 from *WATFIV or *IF.

 40 Array Management Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 ARINIT ______

 Purpose: Before any arrays are created, the user must make one and
 only one call to subroutine ARINIT. This routine initial-
 izes AMS, mainly by creating an array called the master
 table, which is used by AMS to keep track of the user’s
 arrays. The user does not have direct access to the
 master table.

 Calling Sequence:

 CALL ARINIT(noar,minc,&s1,&s2,&s3)

 Parameters:

 noar an integer in the range 1 to 37449, which ____
 specifies the number of arrays the user
 expects to create during the job. This is an
 estimate and not an upper limit.
 minc a positive integer specifying the number of ____
 arrays that the master table should be
 extended to accommodate in case it overflows.
 It will be automatically extended by this
 amount an indefinite number of times, as
 needed.

 Return Codes:

 Normal Initialization successful.
 &s1 No space available to create master table.
 &s2 Invalid argument passed (i.e., noar not in ____
 range or minc not positive). ____
 &s3 ARINIT already has been called successfully.

 Example: CALL ARINIT(100,50,&98,&99)

 The master table is created with enough room to
 handle 100 arrays. Should more arrays be requested,
 the master table will be automatically extended to
 accommodate another 50 arrays. If any time during
 the run the master table should overflow again, it
 will be extended to accommodate yet another 50
 arrays. Control will pass to statement 98 in the
 user’s program if memory space is not available to
 create the master table. Control will pass to
 statement 99 if an invalid argument is passed.

 Array Management Subroutines 41

 MTS 3: System Subroutine Descriptions

 April 1981

 ARRAY, ARRAY2 _____________

 Purpose: To create a 1-dimensional array, ARRAY should be called.
 To create a 2-dimensional array, ARRAY2 should be called.

 Calling Sequences:

 CALL ARRAY(n,t,d1,&s1,&s2,&s3,&s4)
 CALL ARRAY2(n,t,d1,d2,&s1,&s2,&s3,&s4)

 Parameters:

 t length in bytes of an array element (1, 2, 4 _
 or 8).
 d1 a positive integer specifying the number of _
 elements in the 1st dimension of the array.
 d2 a positive integer specifying the number of __
 elements in the 2nd dimension of the array.

 Note: The number of bytes in the array will be
 t*d1*d2, and this product must be in the range 1 to _ __ __
 1048576.

 Values Returned:

 n name of array to be created. The integer _
 value returned will be such that when n is _
 used in the array reference "base name(n+i)", _
 the "i"th element of the array will be
 referenced (base name = $L1, $L4, $I2, $I4,
 $R4, $R8 or $C8.)

 When creating a 1-dimensional array, argument
 n may take the form of an undimensioned _
 FORTRAN variable such as N, a FORTRAN array
 element such as N(J), or an AMS array element
 such as $I4(N+J). In any case, n must be of _
 type INTEGER*4.

 When creating a 2-dimensional array, argument
 n may not take the form of an undimensioned _
 variable. It must be the first element of
 either a FORTRAN or an AMS INTEGER*4 array
 dimensioned at least d2 in length. This is __
 the user’s responsibility.

 Return Codes:

 Normal Array created successfully.
 &s1 Requested array size out of range.

 42 Array Management Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 &s2 No space available for requested array. No
 new arrays may be created unless some exist-
 ing arrays are erased.
 &s3 Request for extension of master table is
 greater than 1048576 bytes.
 &s4 t is not equal to 1, 2, 4 or 8, or ARINIT was _
 never called.

 Examples: The following examples illustrate the creation of
 1-dimensional arrays:

 (1) CALL ARRAY(N,1,100,&1,&2,&3,&4)

 To reference "i"th element: $L1(N+I)

 (2) INTEGER*4 N(20)
 ...
 CALL ARRAY(N(J),8,250)

 To reference "i"th element: $R8(N(J)+I)

 (3) CALL ARRAY(N,4,20)
 ...
 CALL ARRAY($I4(N+J),2,1500)

 To reference "i"th element: $I2($I4(N+J)+I)

 Note that by the method of the second and third examples,
 a series of independent arrays may be created, all
 referenced by the same name, but by different values of J.
 This is like having a 2-dimensional array where each
 column may be of a different type and length and may be
 created, extended, or erased independently. This is
 useful if the exact number of arrays required by a program
 is unknown until determined by execution-time data or
 calculation.

 The following examples illustrate the creation of
 2-dimensional arrays:

 (4) INTEGER*4 N(20)
 ...
 CALL ARRAY2(N(1),4,200,20)

 To reference element "i,j": $R4(N(J)+I)

 (5) CALL ARRAY(N,4,20)
 ...
 CALL ARRAY2($I4(N+1),8,3000,20)

 To reference element "i,j": $R8($I4(N+J)+I)

 Array Management Subroutines 43

 MTS 3: System Subroutine Descriptions

 April 1981

 EXTEND, XTEND2 ______________

 Purpose: To extend a 1-dimensional array, EXTEND should be called.
 To extend a 2-dimensional array, XTEND2 should be called.
 This routine allocates new space dimensioned according to
 the request, moves the contents of the old space to the
 new space, calculates new name values for the new space,
 and frees the old space.

 Calling Sequences:

 CALL EXTEND(n,inc1,&s1,&s2,&s3)
 CALL XTEND2(n,inc1,inc2,&s1,&s2,&s3)

 Parameters:

 n name of array to be extended. _
 inc1 a positive integer or zero specifying the ____
 number of array elements to be added to 1st
 dimension of array.
 inc2 a positive integer or zero specifying the ____
 number of array elements to be added to 2nd
 dimension of array.

 Note: inc1 and inc2 may not both be zero. ____ ____

 Values Returned:

 n new name value for new space obtained. _

 Return Codes:

 Normal Array extended successfully.
 &s1 Size of extended array is greater than
 1048576 bytes.
 &s2 No space available for extension of array.
 &s3 Invalid argument (i.e., array name not recog-
 nized, negative inc1 or inc2, or inc1 and ____ ____ ____
 inc2 both zero), or ARINIT was never called. ____

 Examples: CALL EXTEND(ALPHA,500,&9,&10,&11)
 CALL EXTEND(BETA,M)
 CALL XTEND2($I4(A+1),M,0)
 CALL XTEND2($I4(A+1),M,N)

 Note: When extending a two-dimensional array in the
 second dimension, the argument n (the array name) must be _
 the first element of an array dimensioned at least d2 in __
 length. If the array containing n is not as long as the _
 new expected value of d2, the array containing n must be __ _

 44 Array Management Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981

 extended before the two-dimensional array to which it
 refers is extended. For example,

 CALL ARRAY(N,4,20)
 ...
 CALL ARRAY2($I4(N+1),8,3000,20)
 ...
 CALL EXTEND(N,30)
 CALL XTEND2($I4(N+1),0,30)

 Array Management Subroutines 45

 MTS 3: System Subroutine Descriptions

 April 1981

 ERASE _____

 Purpose: This routine may be called to erase an array.

 Calling Sequence:

 CALL ERASE(n,&s1)

 Parameters:

 n name of array to be erased. _

 Values Returned:

 n A value of -1 is returned to enable both the _
 user and AMS to check if an array has been
 erased.

 Return Codes:

 Normal Array erased successfully.
 &s1 Array name not recognized, or ARINIT was
 never called.

 Examples: CALL ERASE(X)
 CALL ERASE(ABC,&99)
 CALL ERASE($I4(XYZ+1),&100)

 ERASAL ______

 Purpose: This routine may be called to erase all arrays. New
 arrays may subsequently be created without recalling
 ARINIT. (In fact, ARINIT should never be called more than
 once in the same run.)

 Calling Sequence:

 CALL ERASAL

 46 Array Management Subroutines

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

| ASCEBC ______
|
| Translate Table Description
|
|
|
| Purpose: To translate 8-bit ISO ASCII characters into IBM EBCDIC
| characters. An inverse table (EBCASC) is also available.
|
| Location: Resident System
|
| Alt. Entries: IASCEBC, TRASCEBC, TRIAE
|
| Calling Sequence:
|
| Assembly: L r,=V(ASCEBC)
| TR d(l,b),0(r)
|
| Parameters:
|
| r is a general register that will contain the _
| address of the ASCEBC translate table.
| d(l,b) is the location of the region to be trans- ______
| lated. d is the displacement, l is the _ _
| length of the region in bytes, and b is the _
| base register for the region. This parameter
| may be given also in an assembly language
| symbolic format.
|
| Description: The ASCII/EBCDIC translation table is shown on the next
| several pages. This table is for translating ISO 8859/1
| 8-bit ASCII characters into IBM Code Page 37 EBCDIC
| characters used in MTS. This table is also given in the
| file DOC:ALLCHARTABLE.
|
| See the EBCASC subroutine description for a table to
| translate from EBCDIC into ASCII.
|
| Example: Assembly: L 6,=V(ASCEBC)
| TR REG(100),0(6)
| .
| .
| REG DS CL100
|
| FORTRAN: LOGICAL*1 REG(100),TRTAB(256)
| COMMON /ASCEBC/TRTAB
| ...
| CALL ITR(100,REG,0,TRTAB,0)
|
| The above examples will translate the ASCII characters of
| the 100-byte region at location REG into EBCDIC
| characters.

 ASCEBC 47

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

| The FORTRAN example uses the ITR entry point (see the
| description of the Logical Operators subroutines in this
| volume). In addition, a RIP loader record (RIP ASCEBC)
| must be inserted into the object file to force the loader
| to resolve the symbol ASCEBC from the low-core symbol
| table.

 48 ASCEBC

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 ASCEBC 49

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 50 ASCEBC

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 ASCEBC 51

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 52 ASCEBC

 MTS 3: System Subroutine Descriptions

 April 1981

 ATNTRP ______

 Subroutine Description

 Purpose: To allow a FORTRAN program to be notified of the occur-
 rence of an attention interrupt.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: CALL ATNTRP(flag)

 Parameter:

 flag is a LOGICAL*4 variable which will be set to ____
 .TRUE. when an attention interrupt occurs.

 Return Codes:

 None.

 Description: A call to the ATNTRP subroutine will set the value of flag ____
 to .FALSE. and will enable the attention interrupt trap.
 When an attention interrupt occurs, flag will be set to ____
 .TRUE., the trap will be disabled, and execution of the
 interrupted program will be resumed at the point of the
 interrupt. It is the responsibility of the FORTRAN
 program to detect a change in the value of flag and to act ____
 accordingly.

 One call to ATNTRP allows only one attention interrupt to
 be intercepted. If it is desired to intercept another
 attention interrupt, ATNTRP must be called again.

 Example: FORTRAN: LOGICAL*4 FLAG
 CALL ATNTRP(FLAG)
 ...
 10 IF(FLAG) GO TO 20
 ...
 GO TO 10
 20 CONTINUE

 This example calls ATNTRP to enable the intercept of one
 attention interrupt. Periodically, the program checks the
 value of FLAG to determine if an interrupt has occurred;
 if an interrupt has occurred, a branch is made to
 statement label 20.

 ATNTRP 53

 MTS 3: System Subroutine Descriptions

 April 1981

 54 ATNTRP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 ATTNTRP _______

 Subroutine Description

 Purpose: To allow control to be returned to the user on an
 attention interrupt from a terminal.

 Location: Resident System

| Alt. Entries: ATTNT, ATTNTRPS, ATNTPS

 Calling Sequences:

 Assembly: LM 0,1,=A(exit,region)
 CALL ATTNTRP

| CALL ATTNTRPS,(exit,region),VL
|
| FORTRAN: CALL ATNTPS(exit,region,&rc4)

 Parameters:

| exit (GR0) should be zero or the location to ____
| transfer to if an attention interrupt occurs.
| region (GR1) should should contain the location of a ______
| 72-byte save region for storing pertinent
| information.
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
| 4 Illegal parameter or no VL bit specified.

 Description: A call on the subroutine ATTNTRP sets up an attention
 interrupt intercept for one interrupt only. The calling
 sequence specifies the save region for storing information
 and a location to transfer to upon the next occurrence of
 an attention interrupt. When an interrupt occurs and the
 exit is taken, the intercept is cleared so that another
 call to ATTNTRP is necessary to intercept the next
 attention interrupt. When an attention interrupt occurs,
 the exit is taken in the form of a subroutine call (BALR
 14,15 with a GR13 save region provided) to the location
 previously specified. If the exit subroutine returns to
 MTS (BR 14), MTS will handle the interrupt as if ATTNTRP
 had not been called originally. This feature allows the
 user to take brief control of the interrupt before MTS
 takes complete control of the interrupt. When MTS takes

 ATTNTRP 55

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 control of the interrupt, execution of the program will be
 terminated and a message will be printed providing the
 location of the interrupt.

 If GR0 is zero on a call to ATTNTRP, the attention
 interrupt intercept is disabled. GR1 should be zero, or
 it should point to a valid save region.

 When the attention interrupt exit is taken, the first
 eight bytes of the save region contain the attention
 interrupt PSW, and the remainder contains the contents of
 general registers 0 through 15 (in that order) at the time
 of the interrupt. The PSW stored in the savearea is
 always in BC mode (bit 12 is zero). The floating-point
 registers remain as they were at the time of the inter-
 rupt. GR1 will contain the location of the save region.
 The contents of GR0 and GR2 to GR12 are unpredictable.

 If on a call to ATTNTRP the first byte of the save region
 is X’FF’, ATTNTRP does not return to the calling program;
 rather, the right-hand half of the PSW and the general
 registers are immediately restored from the save region
 and a branch is made to the location specified in the
 second word of the region. This type of call on ATTNTRP,
 after the first attention interrupt exit is taken, allows
 the user to set a switch (for example) and to return to
 the point at which he was interrupted with the attention
 interrupt intercept again enabled.

 Routines called from within an attention interrupt exit
 routine must be recursive if execution is to be resumed
 after interrupt processing. The MTS I/O subroutines READ,
 WRITE, SCARDS, SPRINT, SPUNCH, SERCOM, and GUSER are
 recursive; the FORTRAN I/O subroutines are not.

 The ATTNTRP item of the GUINFO/CUINFO subroutine may be
 used to save a previous exit address and associated region
 so that it may be later restored.

| A call on the ATTNTRPS or ATNTPS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the ATTNTRP subroutine.

 Example: In this example, the attention interrupt intercept is
 enabled for a specified portion of the program. When the
 interrupt occurs, a branch will be made to the label EXIT
 where a switch will be set marking the interrupt occur-
 rence. The intercept will be reenabled by a second call
 to ATTNTRP with the FF flag set and a branch will be made
 back to the point where the interrupt occurred.

 56 ATTNTRP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 LM 0,1,=A(EXIT,REGION)
 CALL ATTNTRP The intercept is enabled.
 ...
 SR 0,0
 SR 1,1
 CALL ATTNTRP The intercept is disabled.
 ...
 USING EXIT,15
 EXIT OI SW,X’01’
 MVI 0(1),X’FF’
 LA 0,EXIT
 CALL ATTNTRP The intercept is reenabled.
 REGION DS 18F
 SW DC X’00’

 ATTNTRP 56.1

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 56.2 ATTNTRP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 BINEBCD _______

 Subroutine Description

 Purpose: To convert from binary card-image format into EBCDIC
 format.

 Location: Resident System

| Alt. Entries: BINEB, BINEBCDS, BINEBS

 Calling Sequence:

 Assembly: LA 1,input
 LA 2,output
 CALL BINEBCD

| CALL BINEBCDS,(input,output),VL
|
| FORTRAN: CALL BINEBS(input,output,&rc4)

 Parameters:

| input (GR1) is the 160-byte region containing the _____
| input binary card image.
| output (GR2) is the 80-byte region to contain the ______
| converted EBCDIC form.
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.
|
| Return Codes:
|
| 0 Successful return.
| 4 Illegal parameter or no VL bit specified.

 Notes: Illegal characters are not detected and are trans-
 lated unpredictably.

 The binary card-image region is destroyed during
 the translation process. See the description of
 BINEBCD2 for a subroutine that does not destroy
 this region.

| Description: A call on the BINEBCDS or BINEBS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the BINEBCD subroutine.

 BINEBCD 57

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 Example: Assembly: LA 1,INPUT
 LA 2,OUTPUT
 CALL BINEBCD
 .
 .
 INPUT DS CL160 Binary card image
 OUTPUT DS CL80 EBCDIC form

 The binary card image in the region INPUT is converted to
 EBCDIC format and placed in the region OUTPUT.

 58 BINEBCD

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 BINEBCD2 ________

 Subroutine Description

 Purpose: To convert from binary card-image format into EBCDIC
 format.

 Location: Resident System

| Alt. Entries: BINEB2, BINEBCDS, BINEBS

 Calling Sequence:

 Assembly: LA 1,input
 LA 2,output
 LA 3,wkarea
 CALL BINEBCD2

| CALL BINEBCDS,(input,output,wkarea),VL
|
| FORTRAN: CALL BINEBS(input,output,wkarea,&rc4)

 Parameters:

| input (GR1) is the 160-byte region containing the _____
| input binary card image.
| output (GR2) is the 80-byte region to contain the ______
| converted EBCDIC form.
| wkarea (optional) (GR3) is the location of an 80- ______
| byte work area.
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.
|
| Return Codes:
|
| 0 Successful return.
| 4 Illegal parameter or no VL bit specified.

 Notes: Illegal characters are not detected and are trans-
 lated unpredictably.

 The binary card-image region is not destroyed ___
 during the translation process.

| Description: A call on the BINEBCDS or BINEBS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the BINEBCD2 subroutine.

 BINEBCD2 59

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 Example: Assembly: LA 1,INPUT
 LA 2,OUTPUT
 LA 3,WKAREA
 CALL BINEBCD2
 .
 .
 INPUT DS CL160 Binary card image
 OUTPUT DS CL80 EBCDIC form
 WKAREA DS CL80 Work area

 The binary card image in the region INPUT is converted to
 EBCDIC format and placed in the region OUTPUT.

 60 BINEBCD2

 MTS 3: System Subroutine Descriptions

 April 1981

 BMS (Bit Manipulation Subroutines) __________________________________

 Subroutine Description

 BMS is a subroutine package that enables the user to manipulate bit
 strings. It was written with the FORTRAN user in mind, so most examples
 are in FORTRAN. However, these subroutines may be called from any
 program that uses the standard OS type I (S-type) calling conventions
 that FORTRAN uses; a few examples are included to illustrate this.

 A bit string is a region of contiguous bits in the user’s storage. ___ ______
 It need not begin or end on any of the recognized storage boundaries.
 To define a bit string to a BMS subroutine, the user passes three
 parameters: baseadd, bitdisp, and bitlen. _______ _______ ______

 baseadd is a valid address in the user’s storage. _______
 bitdisp is a fullword integer containing a displacement in bits _______
 from baseadd (may be 0 or a positive integer). _______
 bitlen is a fullword integer containing the length of the string ______
 in bits (may be 0 or a positive integer).

 baseadd and bitdisp together determine the beginning of the string in a _______ _______
 manner analogous to a base address and a displacement in a 360/370
 machine instruction, the difference being that bitdisp is a displacement _______
 in bits rather than bytes. For example,

 baseadd = ALPHA, a fullword variable _______
 bitdisp = 16 _______
 bitlen = 8 ______

 The bit string defined is the third byte of ALPHA.

 ALPHA
 ┌───────────────────────────────────┐ ┌ ┌ ┌
 | byte 1 | byte 2 | byte 3 | byte 4 |
 └───────────────────────────────────┘ ┘ ┘ ┘
 0 7 8 15 16 23 24 31

 The subroutines are of two types: subroutines and integer-valued
 functions. The subroutines all have a normal return and an error
 return. Since they all work the same way, the return codes are
 summarized here:

 Return Codes:

 0 Operation successful.
 4 Negative parameter passed or wrong number of parameters
 passed.

 FORTRAN users can take advantage of the return code by coding an
 ampersand followed by a statement number after the last parameter of a
 subroutine; if the return code is 4, the subroutine will return to the

 BMS (Bit Manipulation Subroutines) 60.1

 MTS 3: System Subroutine Descriptions

 April 1981

 specified statement, rather than to the point from which the subroutine
 was called.

 The subroutines available in the BMS package in *LIBRARY are:

 Subroutine Function __________ ________

 BCLEAR Clear a bit string to zeros
 BSET Set a bit string to ones
 BFLIP Complement a bit string (NOT)
 BCOPY Copy a bit string to another location in storage
 BSWAP Switch 2 bit strings in storage
 BAND Calculate the logical product (AND) of 2 bit strings
 BOR Calculate the logical sum (OR) of 2 bit strings
 BXOR Calculate the modulo-two sum (XOR) of 2 bit strings
 BFETCH Return a bit string as an integer value
 BCOMP Compare 2 bit strings (<, =, >)
 BOOLE Perform on 2 bit strings the boolean operation
 defined by a truth table passed as an argument
 BINSRT Insert a substring in a bit string
 BDLETE Delete a substring from a bit string
 BSCAN Find the location in a bit string of a substring
 BCOUNT Count the occurrences of a substring in a bit
 string

 The complete description of these subroutines is given in MTS Volume
 6, FORTRAN in MTS. ______________

 60.2 BMS (Bit Manipulation Subroutines)

 MTS 3: System Subroutine Descriptions

 April 1981

 Bitwise Logical Functions _________________________

 Subroutine Description

 Purpose: These simple functions do the bitwise logical operations
 which are difficult to state in FORTRAN arithmetic formu-
 las. If their names are prefixed with an "L", they are
 INTEGER; otherwise, they are declared REAL. The only
 exception to this rule is that SHFTR and SHFTL must be
 declared INTEGER or LOGICAL (to prevent unwanted
 conversions).

 Location: *LIBRARY

 Functions: AND, LAND, OR, LOR, XOR, LXOR, COMPL, LCOMPL, SHFTR, and
 SHFTL.

 Calling Sequences:

 AND C = AND(A,B)
 LAND IC = LAND(IA,IB)

 The result has bits on only if the correspond-
 ing bits of the arguments are both on.

 OR C = OR(A,B)
 LOR IC = LOR(IA,IB)

 The result has bits on only if either or both
 arguments have the corresponding bits on.

 XOR C = XOR(A,B)
 LXOR IC = LXOR(IA,IB)

 The result has bits on only if the correspond-
 ing bits of the two arguments are not the
 same.

 COMPL B = COMPL(A)
 LCOMPL IB = LCOMPL(IA)

 The result has all the bits of the argument
 reversed.

 Bitwise Logical Functions 61

 MTS 3: System Subroutine Descriptions

 April 1981

 SHFTR IC = SHFTR(IA,IB)
 SHFTL IC = SHFTL(IA,IB)

 The first argument is shifted right or left by
 the number of bits specified by the last 6
 bits of the second integer argument (i.e.,
 modulo 64). As logical shift functions, they
 are not equivalent to a division or to a
 multiplication by a power of two.

 Unless otherwise stated, the arguments of the functions
 may be either REAL or INTEGER provided that they are
 fullwords (four bytes long).

 All of the functions except for XOR can be generated as
 in-line code by the FORTRAN-H compiler by specifying the _______
 XL option (see the section "*FTN Interface" in MTS Volume
 6, FORTRAN in MTS, for details). Caution should be ________________
 exercised in their use. The functions AND, OR, and COMPL
 are always generated in-line by FORTRAN-H, but their ______ _______
 arguments should not be LOGICAL*1 or INTEGER*2 (specifica-
 tion exceptions may occur on System/360s, or speed is
 drastically reduced on System/370s). The other functions,
 if generated in-line by FORTRAN-H by specifying the XL _______
 option, may take LOGICAL*1 or INTEGER*2 arguments.

 Examples: WORD = XOR(WORD,WORD)

 This example zeros all the bits of the fullword WORD.

 DATA MASK/Z00FF0000/
 SCDBYT = AND(WORD,MASK)

 This example examines the second byte of the fullword WORD
 by deleting the other bytes and storing the result into
 the fullword SCDBYT.

 LOGICAL*4 SHFTR
 IWORD = SHFTR(IWORD,24)

 This example moves the first byte of the fullword IWORD
 into the fourth byte position and leaves the other bytes
 zero.

 DIMENSION CHAR(4)
 READ (5,4) (CHAR(I),I=1,4)
 4 FORMAT(4A1)
 DATA MASK/ZFF000000/
 WORD = 0.
 DO 6 I=1,4
 6 WORD = OR(WORD,SHFTR(AND(CHAR(I),MASK),(I-1)*8))

 This example packs four characters into one word.

 62 Bitwise Logical Functions

 MTS 3: System Subroutine Descriptions

 April 1981

 Blocked Input/Output Routines _____________________________

 Subroutine Description

 Purpose: To read and write blocked records consisting of one or
 more fixed-length logical records.

 Location: *LIBRARY

 Entry Points: The blocked input/output routines have the following entry
 points: QGETUCB, QOPEN, QCLOSE, QGET, QPUT, QFREEUCB, and
 QCNTRL.

 Description: These routines will read and write blocked input/output
 records consisting of one or more fixed-length logical
 records. All input/output requests are made for logical
 records; the routine handles record blocking and deblock-
 ing automatically. These routines are intended for use
 with magnetic tape records although they are not restrict-
 ed to magnetic tapes. More than one input/output file or
 device may be handled at one time. The type of processing
 done by these routines is similar to that done by the
 Queued Sequential Access Method (QSAM) within OS, and for
 this reason they are sometimes referred to as the MTS QSAM
 routines. They should not be confused with the OS
 routines of the same name because the MTS routines provide
 only a subset of the features of the OS routines.

 Several error messages can be generated. Each of these
 begins with the prefix:

 #### QSAM ERROR: <FDname>

 which will be abbreviated as "•••".

 The error messages which can be generated by each routine
 will be listed with that routine in the descriptions which
 follow.

 Some of the error messages will be followed by another
 message giving an error comment produced by a DSR (device
 support routine). These will be of the form

 #### message

 where "message" is the DSR message.

 If the subroutine ERROR is called by these routines, a
 $RESTART command will cause an RC=4 return.

 Blocked I/O Routines 63

 MTS 3: System Subroutine Descriptions

 April 1981

 QGETUCB _______

 Purpose: To acquire a file or device which will be used by the
 blocked input/output routines and generate a table of
 control information for that file or device. This table
 is referred to as the UCB (Unit Control Block).

 Alt. Entry: QGTUCB

 Calling Sequences:

 Assembly: CALL QGETUCB,(name,ptr)

 FORTRAN: CALL QGTUCB(name,ptr,&rc4)

 Parameters:

 name is the location of the name of the file or ____
 device which is to be used by the blocked
 input/output routines ending with a blank or a
 zero-level comma. The name may not be longer
 than 256 characters. If the name begins with
 the character X’00’, it is assumed to be a
 four-byte FDUB-pointer or logical I/O unit num-
 ber for the file or device.
 ptr is the location of a word in which the pointer ___
 to the UCB will be placed.
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs. .

 Return Codes:

 0 Successful return. The file or device was
 acquired and can now be used by the other blocked
 input/output routines.
 4 The file or device could not be acquired properly
 from MTS. The subroutine GETFD or GDINFO returned
 a nonzero return code.

 Messages: ••• COULD NOT BE ACQUIRED FROM MTS.
 ••• ERROR FREEING GDINFO VECTOR.

 Description: A chain of all UCBs acquired thus far is searched to see
 if this file or device has been set up before. If so, the
 UCB pointer is returned immediately. Otherwise, a UCB is
 built and added to the chain, a pointer to it is returned,
 GETFD and GDINFO are called for the file or device, and
 pertinent information is set up in the UCB. The compari-
 son is performed on the full name given, that is, F and
 F(1,10) are considered different files or devices.

 64 Blocked I/O Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 QOPEN _____

 Purpose: To prepare a file or device which has been acquired by
 QGETUCB for blocked input/output operations.

 Assembly: CALL QOPEN,(ptr,key,num,len)

 FORTRAN: CALL QOPEN(ptr,key,num,len,&rc4)

 Parameters:

 ptr is the location of a word containing a UCB ___
 pointer as returned by QGETUCB.
 key is the location of a fullword integer which ___
 indicates whether information is to be read or
 written:
 1 Information is to be written.
 2 Information is to be read.
 5 Information is to be written using previ-
 ous num and len values. ___ ___
 6 Information is to be read using previous
 num and len values. ___ ___
 num is the location of the fullword integer maximum ___
 number of logical records per physical record.
 len is the location of the fullword integer length ___
 of each logical record (in bytes).
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs. .

 Return Codes:

 0 Successful return. The file or device can now be
 read via QGET (if key is 2 or 6) or written via ___
 QPUT (if key is 1 or 5). ___
 4 The file or device is already open, or key is not ___
 1, 2, 5, or 6, messages 1, 2, 4, 5, or 7 have
 occurred, or the physical record length for output
 is larger than the maximum possible output record
 length returned by GDINFO.

 ERROR:

 The subroutine ERROR is called if messages 3 or 6 are
 printed.

 Messages: 1 ••• IS ALREADY OPEN. IT CAN’T BE OPENED TWICE.
 2 ••• READ/WRITE SPECIFICATION INCORRECT IN CALL TO OPEN.
 3 ••• INCORRECT FORMAT ON LABELED TAPE.
 4 ••• ATTEMPT TO CHANGE FORMAT WHILE OPEN.
 5 ••• MAXIMUM RECORD LENGTH TOO LARGE.
 6 ••• CONTROL COMMAND REJECTED.

 Blocked I/O Routines 65

 MTS 3: System Subroutine Descriptions

 April 1981

 The control command was rejected by the tape device
 support routines; this message may be followed by an
 error message from the tape device support routines.

 7 ••• HAS NOT BEEN SUCCESSFULLY ACQUIRED BY QGETUCB.

 Description: The parameters are checked for consistency. The informa-
 tion from the parameters is placed in the UCB. The
 largest possible physical record length is computed, and a
 buffer of that length is acquired. If the device is a
 magnetic tape, blocking will be turned on in the tape DSR
 and the format will be set to

 FB(num*len,len) ___ ___ ___

 unless this is a call to read a labeled tape, in which
 case, QOPEN will check that the format is F or FB with the
 logical record length equal to len. If it is, it will not ___
 be changed; if it is not, an error message will be
 printed. Otherwise, if this is a call to write to a
 device other than a tape, the maximum physical record
 length for output is checked against the maximum possible
 output record length as returned by GDINFO. The maximum
 physical record length is computed as the logical record
 length times the maximum number of logical records per
 physical record.

 66 Blocked I/O Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 QGET ____

 Purpose: To acquire the next logical record from a file or device
 which has been opened as an input file or device via
 QOPEN.

 Calling Sequences:

 Assembly: CALL QGET,(area,ptr)

 FORTRAN: CALL QGET(area,ptr,&rc4)

 Parameters:

 area is the location of an area in which the next ____
 logical record will be stored (input area).
 ptr is the location of a word containing a UCB- ___
 pointer as returned by QGETUCB.
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code is encountered.

 Return Codes:

 0 Successful return. The next logical record has
 been placed in the input area.
 4 End-of-file. The input area is sprayed with the
 character having FF as its hexadecimal representa-
 tion. This corresponds to the 12-11-0-7-8-9
 punched card code.

 ERROR:

 The subroutine ERROR is called if any of the messages
 below are printed.

 Messages: ••• USED IN GET ALTHOUGH NOT OPENED AS AN INPUT FILE.
 ••• USED IN GET ALTHOUGH END-OF-FILE INDICATION GIVEN.
 ••• INPUT RECORD IS LONGER THAN MAXIMUM SPECIFIED.
 ••• RETURN CODE GREATER THAN 4 FROM READ IN GET.

 This message may be followed by an error message from
 the input device support routine.

 ••• TAPE INPUT LENGTH WRONG.

 Description: Physical records are read from the file or device as
 required. Each physical record is broken into one or more
 logical records of the length specified in the call upon
 QOPEN. The last logical record in a physical record may
 actually be shorter than the length of a logical record.
 In that case it is padded out with blanks. If there are

 Blocked I/O Routines 67

 MTS 3: System Subroutine Descriptions

 April 1981

 no more logical records, the input area is sprayed with
 the character having FF as its hexadecimal representation.
 All necessary indices are maintained in the UCB.

 If the device is a magnetic tape, the data is moved
 directly into area by the magnetic-tape routines and no ____
 deblocking is done by QGET since QOPEN has turned blocking
 on in the magnetic-tape routines.

 68 Blocked I/O Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 QPUT ____

 Purpose: To write the next logical record to a file or device which
 has been opened as an output file or device via QOPEN.

 Calling Sequences:

 Assembly: CALL QPUT,(area,ptr)

 FORTRAN: CALL QPUT(area,ptr,&rc4)

 Parameters:

 area is the location of the area in which the next ____
 logical record is stored (output area).
 ptr is the location of a word containing a UCB- ___
 pointer as returned by QGETUCB.
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs.

 Return Codes:

 0 Successful return. The next logical record has
 been placed to the current physical record.
 4 File or device appears to be full (RC=4 from
 WRITE).

 ERROR:

 A message is printed and the subroutine ERROR is
 called if the file or device has not been opened for
 output via the subroutine QOPEN or if a return code
 greater than 4 was received from WRITE while writing
 out a physical record.

 Messages: ••• USED IN QPUT ALTHOUGH NOT OPENED AS AN OUTPUT FILE.
 ••• APPEARS TO BE FULL. (RC=4 FROM WRITE)
 ••• ERROR WHILE WRITING.

 This message may be followed by an error message from
 the output device support routine.

 Description: Each logical record presented by a call upon QPUT is
 placed into a buffer. When the buffer becomes full, it is
 written out as one physical record. All buffers will
 contain the maximum number of logical records specified in
 the call to QOPEN except the last buffer, which will be
 truncated if it is only partially full when QCLOSE is
 called. All necessary indices are maintained in the UCB.

 Blocked I/O Routines 69

 MTS 3: System Subroutine Descriptions

 April 1981

 If the device is a magnetic tape, the data is written
 directly from area and is blocked by the magnetic-tape ____
 routines.

 70 Blocked I/O Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 QCLOSE ______

 Purpose: To terminate blocked input/output operations on a file or
 device which has been opened via QOPEN. If the file or
 device was used for output and a partial buffer of logical
 records for it is present, it is written out as a part of
 the closing procedure.

 Calling Sequences:

 Assembly: CALL QCLOSE,(ptr)

 FORTRAN: CALL QCLOSE(ptr)

 Parameters:

 ptr is the location of a word containing a UCB ___
 pointer as returned by QGETUCB for the file or
 device to be closed. The word should contain a
 zero if all the currently open files or devices
 are to be closed.

 Return Codes:

 0 All returns are successful even though some error
 messages may have been printed.

 Messages: ••• APPEARS TO BE FULL. (RC>4 FROM WRITE)
 ••• FISHY RETURN FROM FREESPAC.
 ••• ERROR WHILE WRITING.

 This message may be followed by an error message from
 the output device support routine.

 Description: If the file or device was used for output and a partial
 buffer of logical records for it is present, it is written
 out. All information in the UCB is reset to the normal
 state of an unopened file or device. The file or device
 is available for use and can be reopened or positioned.

 Note: No tape mark is written when an output file is
 closed. If the tape is repositioned (e.g.,
 rewound), a tape mark will be written by the
 magnetic-tape routines.

 Blocked I/O Routines 71

 MTS 3: System Subroutine Descriptions

 April 1981

 QFREEUCB ________

 Purpose: To free a file or device which has been acquired via a
 call to QGETUCB.

 Alt. Entry: QFRUCB

 Calling Sequences:

 Assembly: CALL QFREEUCB,(ptr)

 FORTRAN: CALL QFRUCB(ptr,&rc4)

 Parameter:

 ptr is the location of a fullword containing the ___
 UCB-pointer (such as returned by QGETUCB) for
 the file or device to be released.
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs.

 Return Codes:

 0 Successful return. The file or device was closed
 and the UCB was released.
 4 The UCB-pointer was not found. The file was not
 closed.

 Messages: ••• ERROR RETURN FROM "FREEFD".
 ••• ERROR RETURN FROM FREESPAC IN QFRUCB.

 Description: The chain of all UCBs acquired is searched for the UCB
 specified by ptr. If it is found, QCLOSE is called using ___
 that UCB; then, the UCB is deleted from the chain and
 released. Any subsequent operations on this file or
 device must be preceded by a call to QGETUCB in order to
 reallocate its UCB.

 72 Blocked I/O Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 QCNTRL ______

 Purpose: To position or write tape marks on a magnetic tape which
 has been acquired for use by the blocked input/output
 routines. To rewind a file or device.

 Calling Sequences:

 Assembly: CALL QCNTRL,(ccon,ptr)

 FORTRAN: CALL QCNTRL(ccon,ptr,&rc4)

 Parameters:

 ccon is the location of the three-byte control com- ____
 mand used to perform the function required, or a
 halfword length followed by a control command of
 that length (see the section "Magnetic Tapes" in
 MTS Volume 19, Tapes and Floppy Disks. ______________________
 ptr is the location of a word which contains a ___
 UCB-pointer as returned by QGETUCB.
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs.

 Return Codes:

 0 Successful return. Operation was accepted by the
 tape device support routines.
 4 Any error condition producing one of the error
 messages below (except the message ERROR RETURN
 FROM CONTROL OPERATION (RC>4)).

 ERROR:

 The subroutine ERROR is called if the message ERROR
 RETURN FROM CONTROL OPERATION (RC>4) is printed.

 Messages: ••• CANNOT BE POSITIONED BECAUSE IT IS OPEN.
 ••• CANNOT BE POSITIONED BECAUSE IT IS NOT A TAPE.
 ••• DOES NOT HAVE A FDUB AND SO CAN’T BE POSITIONED.
 ••• RC=4 FROM CONTROL OPERATION. TAPE IS FULL.
 ••• ERROR RETURN FROM CONTROL OPERATION (RC>4).

 This message may be followed by an error message from
 the tape device support routine.

 ••• CANNOT BE POSITIONED BECAUSE NEVER ACQUIRED BY
 QGETUCB.
 ••• CANNOT BE REWOUND.
 ••• RC>0 FROM "REWIND#".

 Blocked I/O Routines 73

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: If the request is "REW", the information returned by
 GDINFO is checked to be sure the file or device can be
 rewound. If it can, REWIND# is called to rewind the file
 or device. For all other requests, the device must be a
 tape, and the operation is performed by calling the
 magnetic-tape routines.

 74 Blocked I/O Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 BLOKLETR ________

 Subroutine Description

 Purpose: To convert a character string into block letters.

 Alt. Entry: BLKLTR

 Location: Resident System

 Calling Sequences:

 Assembly: CALL BLOKLETR,(chars,linct,output,flen)

 FORTRAN: CALL BLKLTR(chars,linct,output,flen)

 Parameters:

 chars is the location of the character string to be _____
 converted into block letters.
 linct is the location of a fullword integer with a _____
 value between 1 and 12. This specifies which
 of the twelve lines of the block letter is to
 be produced on this call.
 output is the location of the output region in which ______
 the subroutine will build the resultant out-
 put line. It must be of size equal to 14
 times the length of chars. _____
 flen is the location of a fullword integer speci- ____
 fying the length of chars. _____

 Return Codes:

 None.

 Description: The characters generated are those of the 029 keypunch
 character set (PL/I character set plus ¢, !, and ") and
 the lowercase letters. Any other "characters" in the
 input string are converted into blanks. The block charac-
 ters produced are 12 characters wide by 12 rows high and
 are spaced apart by 2 blank columns. The block characters
 are composed of the character in question--that is, in a
 block "ABC", the block A is made up of As, the B of Bs,
 and the C of Cs. This subroutine produces one of the ___
 twelve output rows on each call (specified by the linct _____
 parameter). It prints nothing--it only performs the
 conversion. In order to produce the complete block
 character string, the subroutine must be called twelve
 times.

 BLOKLETR 75

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: SR 8,8
 LP LA 8,1(,8)
 ST 8,LINCT
 CALL BLOKLETR,(CHARS,LINCT,OUTPUT,FLEN)
 SPRINT OUTA,OLEN
 C 8,=F’12’
 BL LP
 .
 .
 CHARS DC C’ABC’
 FLEN DC F’3’
 LINCT DS F
 OLEN DC Y(3*14+1)
 OUTA DC C’ ’
 OUTPUT DS CL80

 FORTRAN: DATA CHARS/’ABC’/
 LOGICAL*1 OUTPUT(42)
 DO 2 J=1,12
 CALL BLKLTR(CHARS,J,OUTPUT,3)
 2 WRITE (6,100) OUTPUT
 100 FORMAT(’ ’,42A1)

 These examples convert the character string ABC into block
 letters. The output will appear as

 AAAAAAAAAA BBBBBBBBBBB CCCCCCCCCC
 AAAAAAAAAAAA BBBBBBBBBBBB CCCCCCCCCCCC
 AA AA BB BB CC CC
 AA AA BB BB CC
 AA AA BB BB CC
 AAAAAAAAAAAA BBBBBBBBBB CC
 AAAAAAAAAAAA BBBBBBBBBB CC
 AA AA BB BB CC
 AA AA BB BB CC
 AA AA BB BB CC CC
 AA AA BBBBBBBBBBBB CCCCCCCCCCCC
 AA AA BBBBBBBBBBB CCCCCCCCCC

 76 BLOKLETR

 MTS 3: System Subroutine Descriptions

 April 1981

 CALC ____

 Subroutine Description

 Purpose: To allow program access to the $CALC command routines.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CALC,(sws,inparm,outparm),VL

 FORTRAN: CALL CALC(sws,inparm,outparm,&rc4,&rc8,&rc12)

 Parameters:

 sws is the location of a fullword (INTEGER*4) of ___
 switches assigned as follows:

 Bit 31: 0 - release CALC internal storage on
 return
 1 - do not release internal storage,
 thus allowing reuse of the same
 invocation on subsequent calls
 Bit 30: 0 - evaluate one expression and
 return
 1 - remain in CALC mode until a
 RETURN, MTS, STOP command, or an
 end-of-file is encountered
 Bit 29: 0 - inparm is the location of a ______
 halfword (INTEGER*2) input
 length followed by the character
 string to be used as input
 1 - inparm is the location of an ______
 input routine
 Bit 28: 0 - no output other than FR0 (float-
 ing register zero) is desired
 1 - character output is desired
 Bit 27: 0 - outparm is the location of a _______
 halfword (INTEGER*2) output
 length followed by an output
 region
 1 - outparm is the location of an _______
 output routine

 inparm (optional) is one of the following: ______
 (a) the location of a halfword (INTEGER*2)
 length followed by a character input
 line,
 (b) the location of an input routine which

 CALC 77

 MTS 3: System Subroutine Descriptions

 April 1981

 will be called via the standard I/O
 subroutine call for input to CALC, or
 (c) 0 or omitted, which means use SCARDS for
 input regardless of bit 29 setting.
 outparm (optional) is one of the following: _______
 (a) the location of a halfword (INTEGER*2)
 length followed by a character output
 region (the length must be the maximum
 length of the region and will be replaced
 by the actual length of the resulting
 character string output),
 (b) the location of an output routine which
 will be called via the standard I/O
 subroutine call for output from CALC, or
 (c) 0 or omitted, which means use SPRINT for
 output regardless of bit 27 setting.
 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Values Returned:

 FR0 contains the value of the last successfully
 evaluated expression on return. This allows
 CALC to be used as a double-precision (REAL*
 8) function-type FORTRAN subprogram.

 Return Codes:

 0 Successful return.
 4 The last expression evaluated generated an error
 message.
 8 The output field provided was of insufficient
 length for the output.
 12 Internal CALC subroutine error--consult the Com-
 puting Center staff.

 Description: The CALC subroutine allows the user to invoke the $CALC
 command routines to evaluate one or more character arith-
 metic expressions. The switch settings control the op-
 tions available concerning input, output, and mode of
 operation.

 The first two switches (bits 31 and 30) control the mode
 of operation, i.e., whether or not to allow reuse of this
 invocation of CALC and whether or not to stay in CALC
 mode. Note that it is necessary to retain the CALC
 internal storage if variable values are to be preserved on
 subsequent calls to the CALC subroutine.

 The next switch (bit 29) controls the mode of input,
 whether the expression is obtained from a given string or
 is obtained by a subroutine call. If inparm is 0 or ______
 omitted, then the input is read from SCARDS. If inparm is ______

 78 CALC

 MTS 3: System Subroutine Descriptions

 April 1981

 omitted, then outparm also must be omitted, forcing input _______
 to be read from SCARDS and output, if any, to be written
 on SPRINT. If inparm specifies an input string (bit 29 is ______
 0) and CALC is to remain in CALC mode (bit 30 is 1), then
 any additional input is read from SCARDS.

 The next two switches (bits 28 and 27) control the mode of
 output. If no output is specified, the subroutine is
 assumed to be called as a function with its only output
 value returned in FR0. If outparm is 0 or omitted, the _______
 value of the expression is written in character form on
 SPRINT. If outparm is the location of an output string, _______
 the result is placed in character form in the specified
 location and the length is modified to the length of the
 resulting string. If outparm is the location of an output _______
 string and CALC remains in CALC mode (bit 30 is 1), then
 all output will be written in the location provided.

 For further information on the $CALC command, see the
 $CALC command description in MTS Volume 1, The Michigan _____________
 Terminal System. _______________

 Examples: FORTRAN: REAL*8 X,CALC
 ...
 X=CALC(0)
 PRINT 100,X
 100 FORMAT(1X,’X=’,E24.18)

 In the above example, one expression will be evaluated.
 The expression will be read from SCARDS and there will be
 no output other than that produced by the PRINT statement.

 INTEGER*2 IN(5)/7,’SQ’,’RT’,’(2’,’)’/
 INTEGER*2 OUT(11)/20/
 ...
 CALL CALC(8,IN,OUT,&100,&200,&300)
 ...
 100 PRINT 1
 1 FORMAT(1X,’BAD EXPRESSION’)
 ...
 200 PRINT 2
 2 FORMAT(1X,’INSUFFICIENT OUTPUT LENGTH’)
 ...
 300 PRINT 3
 3 FORMAT(1X,’CALC SYSTEM ERROR’)

 In the above example, one expression will be evaluated and
 it will come from the array IN. The result will be
 produced in character form in the array OUT. The switch
 value of 8 specifies that bit 28 of the switch word is 1
 and all other bits are 0.

 CALC 79

 MTS 3: System Subroutine Descriptions

 April 1981

 EXTERNAL INRTE,OUTRTE
 ...
 CALL CALC(30,INRTE,OUTRTE)

 In the above example, expressions will be evaluated until
 the occurrence of RETURN, MTS, STOP, or an end-of-file as
 input. Input is returned from the subroutine INRTE and
 character output is written by calling the subroutine
 OUTRTE. The switch value of 30 specifies that bits 27,
 28, 29, and 30 are 1 and all other bits are 0.

 80 CALC

 MTS 3: System Subroutine Descriptions

 April 1981

 CANREPLY ________

 Subroutine Description

 Purpose: To determine whether a program can process interactive
 responses.

 Location: Resident System

 Alt. Entry: CREPLY

 Calling Sequences:

 Assembly: CALL CANREPLY

 FORTRAN: CALL CREPLY(&rc4)

 Parameters:
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs.

 Return Codes:

 0 Yes
 4 No

 Description: The CANREPLY subroutine determines whether or not the
 program can process interactive responses. A program may
 process interactive responses if

 (1) it is running directly in conversational mode, or
 (2) it is a job server program (the GUINFO SERVER item
 is 1) and the GUINFO SRVREPLY item is 1.

 A program may not process interactive responses if

 (1) it is running in batch mode, or
 (2) it is a job server program (the GUINFO SERVER item
 is 1) and the GUINFO SRVREPLY item is 0.

 Example: Assembly: CALL CANREPLY
 LTR 15,15
 BNE BATCH

 FORTRAN: CALL CREPLY(&100)

 The above two examples branch to the specified statement
 label if the user is running in batch mode.

 CANREPLY 81

 MTS 3: System Subroutine Descriptions

 April 1981

 82 CANREPLY

 MTS 3: System Subroutine Descriptions

 April 1981

 CATSCAN _______

 Subroutine Description

 Purpose: To scan the file catalog.

 Location: Resident system

 Calling Sequences:

 Assembly: CATSCAN,(catname,flags,type,name,workptr),VL

 FORTRAN: CATSCAN(catname,flags,type,name,workptr,
 &rc4,...,&rc16)

 Parameters:

 catname is the location of the catalog name to scan _______
 (if flags bit 23 is set) or a pattern to scan _____
 for (if flags bit 22 is set). The format is _____
 halfword length followed by the character
 string.
 flags is the location of a fullword of flags as _____
 follows:

 bit 22 - set if the name parameter is a name ____
 pattern. The scan returns only
 those entities whose name matches
 the pattern (ignored if workptr is _______
 not zero).
 bit-23 - set if the name parameter is the ____
 name of a catalog to be scanned
 (ignored if workptr is not zero). _______
 bit 30 - set if the scan was aborted; any
 storage acquired by CATSCAN is
 released (this is done automatically
 when the scan is completed as indi-
 cated by return code 4).
 bit 31 - return information on the current
 entity. This allows for a rescan
 when the name of the entity is
 larger than the allocated region
 (see the name parameter below). ____

 All other bits are reserved and must be 0.
 type is the location of the type of the entity as ____
 follows:

 1 - File

 CATSCAN 82.1

 MTS 3: System Subroutine Descriptions

 April 1981

 Other values are reserved for future use.
 name is the location of the catalog entity name. ____
 This value is set by name to be the name of ____
 the entity found in the catalog. The format
 is a fullword maximum length (set by the
 caller), a fullword actual length of the name
 (set by CATSCAN), and the text comprising the
 entity name. If the maximum length specified
 is less than the actual length, the entity
 name is truncated and return code 8 is given.
 CATSCAN can then be called again with a new
 (larger) region and with flag bit 31 set in ____
 order to obtain the untruncated entity name.
 workptr is the location of a fullword used by CATSCAN _______
 to store a pointer to the CATSCAN private
 workarea. This workarea is not accessible to
 the user. This pointer is should be initial-
 ized to zero prior to the first call to
 CATSCAN. CATSCAN will zero this pointer when
 the work area is released either by user
 request (flags bit 30 set on call) or when _____
 the scan is completed (return code 4).
 rc4,...,rc16 are statement labels to transfer to if a ____________
 nonzero return code occurs.

 Return codes:
 0 Successful return.
 4 Scan completed with no entity returned, workarea
 released.
 8 The entity name was truncated.
 12 workptr is invalid or other parameter error. _______
 16 Internal error.

 Description: The CATSCAN subroutine scans the system catalog for
 entities either in the specified catalog (if flag bit 23 ____
 is set) or for entities whose names match the specified
 pattern (if flag bit 22 is set). The first call to ____
 CATSCAN (with workptr set to zero) returns information _______
 about the first entity found and sets workptr for future _______
 calls. CATSCAN can then be called repeatedly with this
 workptr to return information for the next entity found. _______
 When no more entities are found, CATSCAN resets workptr to _______
 zero and returns with the return code set to 4.

 The CATSCAN workptr can be used in call to the FILEINFO _______
 subroutine to obtain more information about the entity
 provided that entity is a file (currently the only
 possibility).

 82.2 CATSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 CFDUB _____

 Subroutine Description

 Purpose: To determine whether two FDUB-pointers, logical I/O unit
 numbers, or logical I/O unit names refer to the same file
 or device.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CFDUB,(fdub1,fdub2)

 FORTRAN: CALL CFDUB(fdub1,fdub2,&rc4,&rc8)

 Parameters:

 fdub1 is the location of a fullword FDUB-pointer _____
 (such as returned by GETFD), a fullword-
 integer logical I/O unit number (0 through
 19), or a left-justified 8-character logical
 I/O unit name.
 fdub2 is the location of a fullword FDUB-pointer _____
 (such as returned by GETFD), a fullword-
 integer logical I/O unit number (0 through
 19), or a left-justified 8-character logical
 I/O unit name.
 rc4,rc8 (optional) are statement labels to transfer _______
 to if a nonzero return code occurs.

 Return Codes:

 0 fdub1 and fdub2 refer to the same file or device _____ _____
 (with possibly different modifiers or line number
 ranges).
 4 fdub1 and fdub2 refer to different files or _____ _____
 devices.
 8 fdub1 and/or fdub2 is illegal. _____ _____

 Note: If either fdub1 or fdub2 (or both) is a member of _____ _____
 an explicit or implicit concatenation of files
 and/or devices, the CFDUB subroutine will use the
 current member of the concatenation when making
 the comparison.

 CFDUB 83

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: Assembly: CALL CFDUB,(UNITA,UNITB)
 LTR 15,15
 BNE ERROR
 .
 .
 UNITA DC C’SPRINT ’
 UNITB DC C’SPUNCH ’

 This example checks whether the logical I/O units SPRINT
 and SPUNCH refer to the same file or device.

 FORTRAN: CALL CFDUB(5,6,&4,&8)

 This example checks whether the logical I/O units 5 and 6
 refer to the same file or device.

 84 CFDUB

 MTS 3: System Subroutine Descriptions

 April 1981

 Character Manipulation Routines _______________________________

 Subroutine Description

 Purpose: To provide character manipulation capability for FORTRAN
 programs.

 Location: *LIBRARY

 Entry Points: The character manipulation routines have the following
 entry points: BTD, COMC, DTB, EQUC, FINDC, FINDST, IGC,
 LCOMC, MOVEC, SETC, TRNC, TRNST.

 Description: The subroutines described in this section make use of the
 character orientation of the System/360/370 and the fact
 that each character can be referenced in a LOGICAL*1 array
 in a FORTRAN program. Subroutines are available for
 searching for characters or character strings, ignoring
 characters, translating characters or character strings,
 moving characters, and comparing character strings. All
 of these subroutines are written in 360-assembler lan-
 guage. It is possible to write FORTRAN equivalents of
 each, but at the expense of both CPU time and virtual
 memory space.

 Four of the routines, FINDC, FINDST, IGC, and TRNST,
 return a position in a LOGICAL*1 array as an argument. In
 order that this position be relative to the start of the
 array, these routines have a slightly more cumbersome
 calling sequence than the other routines. This approach
 was dictated by the fact that routines which return
 positions relative to the start of a search (which may not
 be the start of an array) result in many programming
 errors due to misunderstandings about the positions
 returned.

 Three of the routines, FINDC, IGC, and TRNC, search for
 characters. In order for the search to be carried out, an
 initialization step, which may take more CPU time than the
 search itself, is made. Since the initialization is the
 same for any given set of characters or character string,
 these routines allow the user to indicate whether the same
 characters are to be used again. If the expression
 indicating the number of characters is set to zero, the
 same characters given on the last nonzero call will be
 used. This saves repeating the initialization step.
 Users should try to take advantage of this in their
 programs.

 Character Manipulation Routines 85

 MTS 3: System Subroutine Descriptions

 April 1981

 While the subroutines were designed with the use of
 LOGICAL*1 variables in mind, knowledgeable users can, in
 fact, use them to manipulate characters stored in any type
 of FORTRAN variable.

 These routines typically require a fraction of a milli-
 second of CPU time. This depends a great deal on the
 number of characters involved, but timings greater than
 one-half millisecond are rare. The virtual memory
 required averages about 250 bytes per routine.

 The following terms are used in the subroutine descrip-
 tions that follow:

 array variable

 The name of a dimensioned variable or element of
 a dimensioned variable.

 INTEGER expression

 Any valid INTEGER constant (e.g., 10), variable
 name (e.g., I), or arithmetic expression (e.g.,
 I+3, 4*K+12).

 LOGICAL*1 character array

 A dimensioned LOGICAL*1 variable containing
 character information.

 86 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 BTD ___

 Purpose: To convert FORTRAN INTEGER numbers into numeric character
 strings.

 Calling Sequence:

 FORTRAN: CALL BTD(integer,to,cnumb,dnumb,fill,&err)

 Parameters:

 integer is an INTEGER expression giving the number to _______
 be converted.
 to is a LOGICAL*1 array variable indicating the __
 position at which the first character is to
 be stored.
 cnumb is an INTEGER expression giving the number of _____
 characters in the string. cnumb should be ≤ _____
 12 and ≥ 0. If cnumb=0, then the number of _____
 characters will be the number of significant
 digits in integer plus one for the sign if _______
 integer is negative. If cnumb>12, the char- _______ _____
 acters will be right-justified in the 12
 positions starting with to and a RETURN 1 __
 will be taken.
 dnumb is an INTEGER variable which will be set to _____
 the number of significant digits in integer _______
 (plus one if the sign is negative).
 fill is a LOGICAL*1 character variable, or a ____
 Hollerith literal, giving a character to be
 used to replace leading zeros in the string.
 err (optional) is the number of a FORTRAN state- ___
 ment to transfer to if cnumb>12. _____

 Comments: After a call to BTD, dnumb>cnumb implies a loss of _____ _____
 significant digits in the conversion.

 If integer equals zero, then the entire field of cnumb _______ _____
 characters, starting with the character specified by to, __
 will consist of fill characters. ____

 Example: The example below converts the integer I into a
 7-character string with leading zeros replaced by percent
 signs (%).

 LOGICAL*1 CHAR(10)
 CALL BTD(I,CHAR(1),7,ND,’%’)

 If I=-84, the 7 characters stored in CHAR(1) to CHAR(7)
 will be %%%%-84. ND will be set to 3.

 Character Manipulation Routines 87

 MTS 3: System Subroutine Descriptions

 April 1981

 COMC ____

 Purpose: To determine whether one character string is less than,
 equal to, or greater than, another string.

 Calling Sequence:

 FORTRAN: CALL COMC(numb,string1,string2,differ,&err1,
 &err2,&err3)

 Parameters:

 numb is an INTEGER expression giving the number of ____
 characters in each string.
 string1,string2 are the character strings to be _______________
 compared for equality and may be specified
 either by an array variable or by a Hollerith
 literal. Equality is interpreted in the
 sense of position within the 360 collating
 sequence.
 differ is an INTEGER variable which is set to the ______
 position of the first character in string1 _______
 which differs from the corresponding charac-
 ter in string2. If string1 and string2 are _______ _______ _______
 identical, differ is set to zero. ______
 err1 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if string1<string2, i.e., _______ _______
 if string1 precedes string2 in the collating _______ _______
 sequence.
 err2 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if string1>string2, i.e., _______ _______
 if string1 follows string2 in the collating _______ _______
 sequence.
 err3 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if numb≤0. ____

 Comments: The first character that differs dictates whether string1 _______
 is less than or greater than string2. If this character _______
 in string1 appears in the collating sequence before the _______
 corresponding character in string2, then string1<string2; _______ _______ _______
 otherwise, string1>string2. A normal RETURN is made if _______ _______
 string1 is identical to string2. If numb≤0, no comparison _______ _______ ____
 is made.

 Example: The example below compares the 9 characters starting at
 A(15) with the character string PAR FIELD and branches to
 statement number 12 on inequality.

 LOGICAL*1 A(50)
 CALL COMC(9,’PAR FIELD’,A(15),IDIF,&12,&12)

 88 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 DTB ___

 Purpose: To convert a string of numeric characters into a FORTRAN
 INTEGER number.

 Calling Sequence:

 FORTRAN: CALL DTB(from,integer,cnumb,dnumb,fill,&err)

 Parameters:

 from is a LOGICAL*1 array variable, or a Hollerith ____
 literal, giving the numeric characters to be
 converted.
 integer is an INTEGER variable which will be set to _______
 the integer resulting from the conversion.
 cnumb is an INTEGER variable which, on entry to _____
 DTB, should contain the maximum number of
 characters to be scanned in the conversion.
 On exit from DTB, cnumb is set to the actual _____
 number of characters scanned.
 dnumb is an INTEGER variable which will be set to _____
 the number of significant digits in integer. _______
 The sign is not included in this number.
 fill is a LOGICAL*1 character variable, or a ____
 Hollerith literal, specifying a character to
 be ignored if it precedes the numeric digits
 in the string.
 err (optional) is the number of a FORTRAN state- ___
 ment to transfer to if invalid characters or
 multiple signs are encountered, if the con-
 verted number is too large to hold in a
 FORTRAN fullword INTEGER, or if on entry,
 cnumb≤0. _____

 Comments: A single sign (+ or -) may be imbedded in the leading fill
 characters and will determine the sign of integer. If _______
 there is no sign, ’+’ is assumed.

 DTB can be used to reverse any action of the BTD
 subroutine.

 If the field from is all fill characters, then integer and ____ _______
 dnumb are set to zero. If the field from is all zeros, _____ ____
 then integer is set to zero and dnumb is set to cnumb, the _______ _____ _____
 actual number of zeros in the field.

 If the error return to statement err is taken because of ___
 invalid characters or adjacent multiple signs, then
 integer=dnumb=0 and cnumb is set to the number of charac- _______ _____ _____
 ters scanned before the error was encountered.

 Character Manipulation Routines 89

 MTS 3: System Subroutine Descriptions

 April 1981

 There will be no error return taken once a digit is
 encountered. After the first digit, any nondigit (even
 another sign or a fill character) terminates the number.

 If the error return to statement err is taken because the ___
 converted number was too large to hold in the fullword
 integer, then integer=0, dnumb is set to the number of _______ _______ _____
 digits encountered, and cnumb is set to the total number _____
 of characters in the field (fill characters plus sign
 character plus numeric characters).

 If the error return to statement err is taken because ___
 cnumb≤0, then integer=dnumb=0 and cnumb remains unchanged. _____ _______ _____ _____

 Example: The example below converts the character string

 -139.....

 stored starting in element 30 of array NUMB, into an
 integer number:

 LOGICAL*1 NUMB(75)
 NC=14
 CALL DTB(NUMB(30),I,NC,ND,’.’,&10)

 On exit, I=-139, NC=9, and ND=3.

 90 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 EQUC ____

 Purpose: To compare two characters for equality.

 Calling Sequence:

 FORTRAN: LOGICAL EQUC
 IF (EQUC(char1,char2)) statement

 Parameters:

 char1,char2 are LOGICAL*1 variables or array ele- ___________
 ments, or single-character Hollerith
 literals, to be compared for equality.
 statement is a FORTRAN statement to transfer to if _________
 char1 and char2 are equal. _____ _____

 Comment: If char1 is identical to char2, then EQUC(char1,char2) has _____ _____
 the value .TRUE.; otherwise, it has the value .FALSE.

 Example: The example below transfers to statement number 10 if the
 7th element of ARRAY is the letter G.

 LOGICAL EQUC
 LOGICAL*1 ARRAY(25)
 IF (EQUC(’G’,ARRAY(7))) GO TO 10

 Character Manipulation Routines 91

 MTS 3: System Subroutine Descriptions

 April 1981

 FINDC _____

 Purpose: To search for any one of a set of characters.

 Calling Sequence:

 FORTRAN: CALL FINDC(array,len,char,numb,start,finish,
 cfound,&err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____
 searched.
 len is an INTEGER expression giving the position ___
 in array of the last character to be _____
 searched.
 char is either an array variable indicating the ____
 characters for which to search or a Hollerith
 literal specifying the characters.
 numb is an INTEGER expression giving the number of ____
 characters in char. If numb=0, then the same ____ ____
 characters as given in a preceding call with
 numb>0 will be used. ____
 start is an INTEGER expression indicating the posi- _____
 tion in array at which the search is to _____
 start.
 finish is an INTEGER variable which will contain the ______
 position in array at which a character in _____
 char is found. If none of the characters is ____
 found, finish is set to zero. ______
 cfound is an INTEGER variable which will be set to ______
 the position in char of the character which ____
 is found. If none of the characters is
 found, cfound is set to zero. ______
 err1 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if none of the characters
 is found in the search.
 err2 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if start≤0, start>len, or _____ _____ ___
 numb<0. ____

 Comment: If numb=0 on the first call to FINDC, no characters will ____
 be found. Control will be transferred to the statement
 numbered err2. ____

 Example: The example below searches the array LARRAY for the first
 occurrence of the numeric characters 0,1,2,3,...,9.

 LOGICAL*1 LARRAY(125)
 CALL FINDC(LARRAY,125,’0123456789’,10,1,IF,ICF,&10)

 92 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 If LARRAY contains the character ’7’ in position 39, i.e.,
 in LARRAY(39), with no numeric characters preceding it,
 then, upon exit from FINDC, IF will be 39 and ICF will be
 8, indicating that the 8th character in the string
 ’0123456789’ was found in LARRAY(39). If there are no
 numeric characters in LARRAY, then control will transfer
 to statement 10 with IF=ICF=0.

 If, on subsequent calls to FINDC, the same characters
 0,1,2,3,...,9 are to be searched for, then the fourth
 parameter numb should be set to zero so that initializa- ____
 tion need not be repeated.

 Character Manipulation Routines 93

 MTS 3: System Subroutine Descriptions

 April 1981

 FINDST ______

 Purpose: To search an array for a specified character string.

 Calling Sequence:

 FORTRAN: CALL FINDST(array,len,string,numb,start,finish,
 &err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____
 searched.
 len is an INTEGER expression giving the position ___
 in array of the last character in the search. _____
 string is an array variable, or a Hollerith literal, ______
 indicating the character string for which to
 search.
 numb is an INTEGER expression giving the number of ____
 characters in string. ______
 start is an INTEGER expression indicating the posi- _____
 tion in array at which the search is to _____
 start.
 finish is an INTEGER variable which will be set to ______
 the position of the character in array at _____
 which string starts. If string is not found, ______ ______
 finish is set to zero. ______
 err1 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if string is not found. ______
 err2 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if start≤0, start>len, or _____ _____ ___
 numb≤0. ____

 Comment: The complete string must be within the limits start and ______ _____
 len of array. ___ _____

 Example: The example below searches the array AR for the string
 MODE with the search starting at the 10th character and
 continuing to the 40th character.

 LOGICAL*1 AR(50)
 CALL FINDST(AR,40,’MODE’,4,10,IFINIS,&12)

 94 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 IGC ___

 Purpose: To ignore all of a set of characters, i.e., to find the
 first character which is not one of a specified set of
 characters.

 Calling Sequence:

 FORTRAN: CALL IGC(array,len,char,numb,start,finish,
 &err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____
 searched.
 len is an INTEGER expression giving the position ___
 in array of the last character in the search. _____
 char is either an array variable containing, or a ____
 Hollerith literal specifying, the characters
 to be ignored.
 numb is an INTEGER expression giving the number of ____
 characters in char. If numb=0, the charac- ____ ____
 ters given in a preceding call with numb>0 ____
 will be used in the search.
 start is an INTEGER expression giving the position _____
 in array of the character at which the search _____
 is to start.
 finish is an INTEGER variable which will be set to ______
 the character position in array at which the _____
 first character different from those in char ____
 is found. If all characters are ignored,
 finish is set to zero. ______
 err1 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if all characters are
 ignored.
 err2 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if start≤0, start>len, or _____ _____ ___
 numb<0. ____

 Comment: If numb=0 on the first call to IGC, no characters are ____
 ignored; finish is set equal to start. ______ _____

 Example: The example below searches for the first nonblank charac-
 ter in the array LARRAY.

 LOGICAL*1 LARRAY(212)
 CALL IGC(LARRAY,212,’ ’,1,1,IF,&10)

 If the first nonblank character is in character position
 132 of the array, IF will be set to 132. If all

 Character Manipulation Routines 95

 MTS 3: System Subroutine Descriptions

 April 1981

 characters are blank, then IF will be set to zero and
 control will transfer to statement number 10.

 96 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 LCOMC _____

 Purpose: To determine whether one character string is less than,
 equal to, or greater than another string.

 Calling Sequence:

 FORTRAN: i=LCOMC(numb,string1,string2)

 Parameters:

 numb is an INTEGER expression giving the number of ____
 characters in each string.
 string1,string2 are the character strings to be _______________
 compared for equality. They may be specified
 either by an array variable or by a Hollerith
 literal. Equality is interpreted in the
 sense of position within the 360 collating
 sequence.

 Values Returned:

 LCOMC is a FUNCTION subprogram and will return an
 integer i having a value of: _

 +1 if string1>string2, i.e., if string1 follows _______ _______ _______
 string2 in the collating sequence. _______
 0 if string1=string2, i.e., if the character _______ _______
 strings are identical.
 -1 if string1<string2, i.e., if string1 precedes _______ _______ _______
 string2 in the collating sequence. _______

 Comment: If numb≤0, no comparison is made and i is set to zero. ____ _

 Example: The example below compares 2 character strings of 20
 characters starting at A(1) and B(19) and branches to
 statement 12 on equality.

 LOGICAL*1 A(50),B(60)
 IF(LCOMC(20,A(1),B(19)).EQ.0) GO TO 12

 Character Manipulation Routines 97

 MTS 3: System Subroutine Descriptions

 April 1981

 MOVEC _____

 Purpose: To move character strings from one place to another.

 Calling Sequence:

 FORTRAN: CALL MOVEC(numb,from,to,&err)

 Parameters:

 numb is an INTEGER expression giving the number of ____
 characters to be moved. numb must be greater ____
 than zero.
 from is either an array variable containing the ____
 character string to be moved or a Hollerith
 literal specifying the string.
 to is an array variable indicating the start of __
 the place to which the from characters are to ____
 be moved.
 err (optional) is the number of a FORTRAN state- ___
 ment to transfer to if numb≤0 or numb>32767. ____ ____

 Comments: The from and to array variables can indicate portions of ____ __
 the same array. In fact, they can be overlapping por-
 tions. However, in the latter case, the user must ensure
 that characters to be moved are not replaced before being
 moved. The characters are moved one at a time from the
 first to the numbth position. ____

 If numb≤0 or numb>32767, no transfer of characters will ____ ____
 occur.

 Example: The example below moves 7 characters, starting with the
 10th character of array AR1, to AR2, starting with the
 80th character.

 LOGICAL*1 AR1(100),AR2(132)
 CALL MOVEC(7,AR1(10),AR2(80))

 The example below moves the character string ERROR MES-
 SAGES into the array MSG.

 LOGICAL*1 MSG(80)
 CALL MOVEC(14,’ERROR MESSAGES’,MSG)

 The example below moves the 4 characters DATA into a
 simple INTEGER variable I.

 DATA X/’DATA’/
 CALL MOVEC(4,X,I)

 98 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 SETC ____

 Purpose: To set adjacent characters equal to a specified character.

 Calling Sequence:

 FORTRAN: CALL SETC(numb,array,char,&err)

 Parameters:

 numb is an INTEGER expression giving the number of ____
 characters to be set.
 array is an array variable giving the starting _____
 position of the characters to be set.
 char is either a variable containing the character ____
 to which the numb characters are to be set or ____
 a Hollerith literal specifying the character.
 err (optional) is the number of a FORTRAN state- ___
 ment to transfer to if numb≤0. ____

 Comment: If numb≤0, no characters are changed. ____

 Example: The example below sets all of the characters in the array
 A to blanks.

 LOGICAL*1 A(50)
 CALL SETC(50,A,’ ’)

 Character Manipulation Routines 99

 MTS 3: System Subroutine Descriptions

 April 1981

 TRNC ____

 Purpose: To translate specified characters in an array into other
 characters.

 Calling Sequence:

 FORTRAN: CALL TRNC(numb,array,oldchar,newchar,cnumb,&err)

 Parameters:

 numb is an INTEGER expression giving the number of ____
 characters for translation.
 array is an array variable giving the starting _____
 position of the characters for translation.
 oldchar is either an array variable containing a list _______
 of the characters to be translated, or a
 Hollerith literal specifying the characters.
 newchar is either an array variable containing a list _______
 of the characters into which oldchar is to be _______
 translated, or a Hollerith literal specifying
 the characters. Any occurrence of the first
 character in oldchar will be translated into _______
 the first character of newchar, the second _______
 character of oldchar into the second of _______
 newchar, etc. _______
 cnumb is an INTEGER expression giving the number of _____
 characters in oldchar and newchar. If cnumb= _______ _______ _____
 0, then oldchar and newchar as given in a _______ _______
 preceding call with cnumb>0 will be used. _____
 err (optional) is the number of a FORTRAN state- ___
 ment to transfer to if numb≤0 or cnumb<0. ____ _____

 Comments: The routine does not check for duplication of characters
 in oldchar. The final appearance of a duplicated charac- _______
 ter will dictate its translation.

 It is the user’s responsibility to ensure that there are
 the same number of characters in oldchar and newchar. If _______ _______
 there are not, unpredictable translations may occur.

 If numb≤0 or cnumb<0 (or ≤0 on the first call), no ____ _____
 translation will occur. All characters not mentioned in
 oldchar are left alone. _______

 Example: The example below translates all As to 1s, Bs to 2s, and
 Cs to 3s in the array CHAR.

 LOGICAL*1 CHAR(65)
 CALL TRNC(65,CHAR,’ABC’,’123’,3)

 100 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 TRNST _____

 Purpose: To search for a given character string and translate it
 into another string.

 Calling Sequence:

 FORTRAN: CALL TRNST(array,len,oldst,newst,numb,start,
 finish,&err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____
 searched.
 len is an INTEGER expression giving the character ___
 position in array at which searching is to _____
 terminate.
 oldst is either an array variable containing the _____
 character string to be translated or a Hol-
 lerith literal specifying the character
 string.
 newst is either an array variable containing the _____
 new character string or a Hollerith literal
 specifying the string.
 numb is an INTEGER expression giving the number of ____
 characters in the strings.
 start is an INTEGER expression giving the position _____
 in array at which searching is to start. _____
 finish is an INTEGER variable which will be set to ______
 the starting position of the translated
 string. finish will be set to zero if the ______
 string is not found.
 err1 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if oldst is not found in _____
 the search.
 err2 (optional) is the number of a FORTRAN state- ____
 ment to transfer to if start≤0, start>len, or _____ _____ ___
 numb≤0. ____

 Comments: oldst and newst must be the same lengths. Only the first _____ _____
 occurrence of oldst is translated. oldst must be com- _____ _____
 pletely within the limits start and len of array for _____ ___ _____
 translation to occur.

 Example: The example below translates the string RECIEVE in the
 array A to RECEIVE.

 LOGICAL*1 A(200)
 CALL TRNST(A,200,’RECIEVE’,’RECEIVE’,7,1,IF,&30)

 Character Manipulation Routines 101

 MTS 3: System Subroutine Descriptions

 April 1981

 If the string is found starting in character 29 of A, then
 IF will be set to 29. If the string is not found, then
 IF=0 and control is transferred to statement number 30.

 102 Character Manipulation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 CHARGE ______

 Subroutine Description

 Purpose: To compute the charge for the given quantities of
 resources using the current rates for the signed on ID.

 Location: Resident System

 Calling Sequences:

 Assembly: (a) CALL CHARGE,(cnt,quantvec,zero)
 (b) CALL CHARGE,(cnt,quant,type)

 FORTRAN: (a) amount=CHARGE(cnt,quantvec,zeroval)
 (b) amount=CHARGE(cnt,quant,type)

 PL/I(F): (a) amount=plcallt(CHARGE,f3,ADDR(cnt),
 ADDR(quantvec),ADDR(zeroval));
 (b) amount=plcallt(CHARGE,f3,ADDR(cnt),
 ADDR(quant),ADDR(type));

 Parameters:

 cnt is the location of the fullword (INTEGER*4, ___
 FIXED BINARY(31)) or halfword (INTEGER*2,
 FIXED BINARY(15)), integer number of ele-
 ments (0-14) in the array "quantvec" or
 "quant". (If the value is zero, it must be
 a fullword.) This value need be only as
 large as the minimum number of elements
 necessary to pass all of the relevant
 quantities.
 quantvec is the location of the first element of a ________
 fullword integer array (INTEGER*4, FIXED
 BINARY(31)) containing "cnt" elements which
 have the following data:

 Element Data _______ ____

 1 CPU time in milliseconds
 2 CPU virtual memory integral in
 page-milliseconds
 3 line-printer lines printed
 4 line-printer pages printed
 5 elapsed time in seconds
 6 cards read
 7 cards punched
 8 disk storage in page-minutes
 9 reserved; should be zero

 CHARGE 103

 MTS 3: System Subroutine Descriptions

 April 1981

 10 magnetic-tape drive time in seconds
 11 magnetic-tape mounts
 12 plotter time in seconds
 13 plotter paper in millimeters
 14 paper tape punched in millimeters
 15 wait virtual memory in page-seconds
 16 reserved (should be zero)
 17 paper-tape reader time in seconds
 18 paper-tape mounts
 19 paper-tape punch time in seconds
 20 paper-tape punch mounts
 21 floppy-disk drive time in seconds
 22 floppy-disk mounts
 23 page-printer lines printed
 24 page-printer pages printed
 25 page-printer images printed
 26 page-printer sheets printed
 27 phototypesetter units
 28 phototypesetter media (cm²)

 zero (optional) is a fullword integer or ____
 floating-point zero or the location of a
 fullword zero.
 zeroval (optional) is the location of a fullword _______
 integer or floating-point (INTEGER*4, FIXED
 BINARY(31)) zero.
 quant is the location of a fullword integer array _____
 (INTEGER*4, FIXED BINARY(31)) containing
 the values of the quantities for which the
 charge is wanted.
 type is the location of the first element of a ____
 fullword (INTEGER*4, FIXED BINARY(31)) or
 halfword (INTEGER*2, FIXED BINARY(15)), in-
 teger array containing indexes to identify
 the corresponding values in "quant". The
 values of these indexes are the same as the
 element numbers for the relevant values in
 "quantvec".
 plcallt is one of the procedures PLCALLF, PLCALLE, _______
 or PLCALLD.
 f3 is the location of a FIXED BINARY(31) __
 constant or variable having the value
 three.

 Values Returned:

 GR0 contains the charge for the specified quan-
 tities of resources computed in centicents
 (ten-thousandths of a dollar) using the
 current rates for the signed on ID.
 FR0 contains the doubleword charge for the
 specified quantities of resources computed

 104 CHARGE

 MTS 3: System Subroutine Descriptions

 April 1981

 in dollars using the current rates for the
 signed on ID.

 Return Codes:

 0 The value has been returned as described above.
 4 Invalid value for "cnt".
 8 Invalid value in "type"; the value returned is the
 index which is in error.
 12 Error, probably due to values in "quantvec" or
 "quant" which are too large; the value returned is
 the number (subscript) of the element if (a) call,
 or the index for the element if (b) call, being
 processed at the time the error occurred.
 16 Error caused by either an invalid parameter list
 pointer or an error return from a system sub-
 routine (the latter should not occur).

 Examples: FORTRAN: INTEGER VMIVEC(2)/0, 60000/
 CPU=CHARGE(1, 60000, 0)
 VMI=CHARGE(2, VMIVEC, 0)
 FACTOR=VMI/CPU

 FACTOR=CHARGE(1, 60000, 2)/CHARGE(1, 60000, 1)

 The above two examples compute the factor by which the CPU
 virtual memory integral (VMI) is multiplied to produce
 processing time.

 CHARGE 105

 MTS 3: System Subroutine Descriptions

 April 1981

 106 CHARGE

 MTS 3: System Subroutine Descriptions

 April 1981

 CHGFSZ ______

 Subroutine Description

 Purpose: To change the size or maxsize of a file either absolutely
 or incrementally.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CHGFSZ,(unit,size,flag)

 FORTRAN: CALL CHGFSZ(unit,size,flag,&rc4,&rc8,&rc12,
 &rc16,&rc20,&rc24,&rc28,&rc32,&rc36)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 size is the location of a fullword containing the ____
 desired size or maxsize (absolute or increment-
 al) in pages.
 flag is the location of a fullword integer giving ____
 more information about the size parameter as ____
 follows:

 0 - size is the desired size, absolute ____
 1 - size is the desired change in size (positive ____
 or negative)
 2 - size is the desired maxsize, absolute ____
 3 - size is the desired change in maxsize (posi- ____
 tive or negative)

 rc4,...,rc36 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Successful return--size or maxsize changed.
 4 File does not exist.
 8 Hardware error or software inconsistency.
 12 Access not allowed--write-expand access required
 to increase size; truncate or write-expand access
 required to decrease size.

 CHGFSZ 107

 MTS 3: System Subroutine Descriptions

 April 1981

 16 Locking the file will result in a deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent use
 of a shared file).
 24 Bad parameters (i.e., bad FDUB-pointer, not a
 file, etc.).
 28 Inconsistent size parameter (see Note 1 below). ____
 32 No disk space available for expansion.
 36 The space allocated to this account has been
 exceeded.

 Notes: The resultant absolute size must be positive,
 greater than, or equal to the truncated size, and
 less than or equal to the maxsize. The maxsize
 must be less than or equal to 32767 pages.

 A request for an absolute size of zero is defined
 to mean truncate the file.

 A request for an absolute maxsize of zero is
 defined to mean set the maxsize equal to the
 current size.

 Example: Assembly: CALL CHGFSZ,(UNIT,SIZE,FLAG)
 .
 .
 UNIT DC F’5’
 SIZE DC F’150’
 FLAG DC F’0’

 The above example sets the absolute size of the file
 associated with logical I/O unit 5 to 150 pages.

 FORTRAN: INTEGER*4 UNIT
 DATA UNIT/4/
 ...
 CALL CHGFSZ(UNIT,-10,1)

 The above example decrements the size of the file associ-
 ated with logical I/O unit 4 by 10 pages.

 108 CHGFSZ

 MTS 3: System Subroutine Descriptions

 April 1981

 CHGMBC ______

 Subroutine Description

 Purpose: To change dynamically the number of page-sized buffers
 used by the file system to read and write a particular
 file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CHGMBC,(unit,maxbuf)

 FORTRAN: CALL CHGMBC(unit,maxbuf,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 maxbuf is the location of a fullword integer speci- ______
 fying the maximum number of buffers to use.

 1 ≤ maxbuf ≤ 100 for sequential files ______
 3 ≤ maxbuf ≤ 100 for line files ______

 rc4,...,rc24 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Maximum number of buffers changed as specified.
 4 The file does not exist.
 8 Hardware error or software inconsistency.
 12 Access not allowed to file.
 16 Locking the file will result in a deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent use
 of a shared file).
 24 Bad parameters (i.e., bad FDUB-pointer, not a
 file, maxbuf out of legal range). ______

 Description: In general, the file system will dynamically allocate as
 many page-sized buffers for use in reading and writing a

 CHGMBC 109

 MTS 3: System Subroutine Descriptions

 April 1981

 particular file as there are pages in actual use by the
 file (i.e., the truncated size) up to the maximum number
 of buffers specified. The default maximum number of
 buffers for both line and sequential files is 5. In
 simple terms, the more buffers one allows, the less
 physical disk I/O required, but the greater the virtual
 memory required.

 Notes: The maximum number of buffers set by CHGMBC is not ___
 a static quantity saved with the file and used
 each time the file is accessed. The default value
 is always used when the file is first referenced;
 it may be changed dynamically by a call to CHGMBC.

 In general, large line files will benefit more
 than sequential files from an increase in the
 maximum number of buffers.

 Examples: Assembly: CALL CHGMBC,(UNIT,MAXBUF)
 .
 .
 UNIT DC F’3’
 MAXBUF DC F’10’

 FORTRAN: INTEGER*4 UNIT, MAXBUF
 DATA UNIT/3/, MAXBUF/10/
 ...
 CALL CHGMBC(UNIT,MAXBUF)

 The above examples dynamically assign a maximum of 10
 buffers to use during I/O operations on the file associ-
 ated with logical I/O unit 3.

 110 CHGMBC

 MTS 3: System Subroutine Descriptions

 April 1981

 CHGXF _____

 Subroutine Description

 Purpose: To change the expansion factor of a file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CHGXF,(unit,expfac)

 FORTRAN: CALL CHGXF(unit,expfac,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 expfac is the location of a fullword integer (of ______
 absolute value < 32768) specifying the expan-
 sion factor to use.
 expfac = 0 designates the default expansion ______
 factor (which is 10% of the file
 size).
 > 0 designates an absolute number of
 pages by which the file may be
 expanded.
 < 0 designates a percentage of the
 file size by which the file may
 expand, e.g., -50 means 50%.
 rc4,...,rc24 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 The expansion factor was changed as specified.
 4 The file does not exist.
 8 Hardware error or software inconsistency.
 12 Access not allowed to file.
 16 Locking the file will result in a deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent use
 of a shared file).
 24 Invalid call (i.e., bad FDUB-pointer, not a file,
 expfac out of legal range). ______

 CHGXF 111

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The expansion factor of a file determines the amount by
 which the file may expand when it exceeds the size of its
 current disk allocation. This amount is added to the
 current allocation and the corresponding disk space is
 used to contain the new data that was being written into
 the file when the expansion occurred.

 There is a certain amount of system overhead necessary
 each time a file is expanded which adds to the user’s cost
 in writing to the file. By reducing the number of times a
 file must be expanded, this cost may be lowered. One
 method of reducing this is to increase the amount by which
 a file is expanded each time, i.e., increase the expansion
 factor.

 The CHGXF subroutine may be used to increase the expansion
 factor. By setting the expfac parameter, the user may ______
 specify either an absolute number of pages or a percentage
 of the current (at the time of expansion) size to be used
 as the expansion amount when an expansion occurs. The
 default expansion factor is 10%.

 For example, if the user has a file with a current size of
 100 pages and wishes to write 150 pages of data into it,
 the file will have to be expanded 5 times in order to
 accommodate the data using the default expansion factor of
 10% (the file is expanded to the sizes 110, 121, 133, 146,
 and 161 pages, respectively). If this expansion factor is
 changed to 50%, the file will be expanded only once to a
 size of 150 pages. If an expansion factor of 100% were
 used, the file would be expanded to 200 pages leaving 50
 pages unused.

 The expansion amount calculated using the expansion factor
 will not (except as noted below) result in an expansion of
 insufficient size to contain the new data, as adequate
 space is always acquired to ensure that the new data may
 be written into the file. However, an improper expansion
 factor may cause file space to be wasted as illustrated in
 the example above.

 If an extensive allocation is requested which would cause
 the user’s disk space allocation or the remaining free
 space on the disk volume to be exceeded, the expansion
 amount is decreased accordingly. This prevents an expan-
 sion factor from inhibiting an otherwise legitimate exten-
 sion of a file.

 112 CHGXF

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL CHFXF,(UNIT,EXPFAC)
 .
 .
 UNIT DC F’3’
 EXPFAC DC F’-20’

 FORTRAN: INTEGER*4 UNIT, EXPFAC
 DATA UNIT/3/, EXPFAC/-20/
 ...
 CALL CHGXF(UNIT,EXPFAC)

 The above examples set the expansion factor to 20% for the
 file assigned to logical I/O unit 3.

 CHGXF 113

 MTS 3: System Subroutine Descriptions

 April 1981

 114 CHGXF

 MTS 3: System Subroutine Descriptions

 April 1981

 CHKACC ______

 Subroutine Description

 Purpose: To determine the access that a signon ID, project number,
 and program key "triple" has to a particular file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CHKACC,(name,triple)

 FORTRAN: CALL CHKACC(name,triple,&rc4,&rc8,&rc12)

 INTEGER*4 CHKACC,x
 x=CHKACC(name,triple)

 Parameters:

 name is the location of the name (with trailing ____
 blank) of the file.
 triple is the location of a 4-character signon ID, ______
 followed by a 4-character project number,
 followed by an external program key (with
 trailing blank), such as returned by GUINFO
 or GFINFO.
 x is the fullword-integer value returned (i.e., _
 the access) if the file exists (see values
 returned below).
 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Values Returned:

 If the return code from CHKACC is zero (or twelve),
 then GR0 contains the access that the "triple" has to
 the file as follows:

 1 Read access allowed.
 2 Write-expand access allowed.
 4 Write-change/empty access allowed.
 8 Truncate/renumber access allowed.
 16 Destroy/rename access allowed.
 32 Permit access allowed.

 If more than one type of access is allowed, the value
 returned in GR0 is the sum of the different types of
 access, e.g., GR0=63 implies unlimited access.

 CHKACC 115

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 The file exists, access returned in GR0.
 4 The file does not exist.
 8 Hardware error or software inconsistency
 encountered.
 12 Access not allowed, zero returned in GR0.

 Note: FORTRAN users wishing to obtain both the return
 codes and the access types may use the RCALL
 subroutine to call CHKACC.

 Examples: Assembly: CALL CHKACC,(FNAME,TRIPLE)
 LTR 15,15
 BNZ NOREAD
 N GR0,=F’1’
 C GR0,=F’1’
 BE READ
 .
 .
 FNAME DC C’6AGA:DATAFILE ’
 TRIPLE DC C’1KYZ’ Signon ID
 DC C’W000’ Project number
 DC C’*EXEC ’ Program key

 FORTRAN: INTEGER*4 CHKACC,X
 DATA MASK/Z00000001/
 X=CHKACC(’6AGA:DATAFILE ’,’1KYZW000*EXEC ’)
 X=LAND(X,MASK)
 IF (X.EQ.1) GO TO 10

 These examples call CHKACC to determine whether signon ID
 1KYZ under project number W000 running a program with a
 program key of *EXEC (the default) has read access to file
 6AGA:DATAFILE.

 116 CHKACC

 MTS 3: System Subroutine Descriptions

 April 1981

 CHKFDUB _______

 Subroutine Description

 Purpose: To obtain a FDUB-pointer for a specified logical I/O unit;
 to verify that a given FDUB-pointer is legal.

 Location: Resident System

 Alt. Entry: CHKFDB

 Calling Sequences:

 Assembly: CALL CHKFDUB,(unit)

 FORTRAN: INTEGER*4 CHKFDB,x
 x = CHKFDB(unit)

 Parameters:

 unit is the location of either ____
 (a) a FDUB-pointer (as returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 x is the fullword-integer FDUB-pointer obtained _
 (see "Value Returned" below).

 Value Returned:

 GR0 contains the FDUB-pointer obtained for the speci-
 fied logical I/O unit if a successful return is made.

 Return Codes:

 0 Successful return.
 4 Illegal unit parameter specified, supplied pointer ____
 is not pointing to a FDUB, or logical I/O unit
 unassigned.

 Description: If the unit parameter is the location of a FDUB-pointer, ____
 the subroutine will check the legality of the
 FDUB-pointer.

 If the unit parameter is the location of a logical I/O ____
 unit name or number, the subroutine will obtain a FDUB-
 pointer for the file or device attached to that logical
 I/O unit. This is one way to obtain a FDUB-pointer for a
 file or device attached to a specific logical I/O unit,

 CHKFDUB 117

 MTS 3: System Subroutine Descriptions

 April 1981

 but in general it is better to use the logical I/O unit
 name or number rather than the FDUB-pointer. If the
 logical I/O unit is unassigned, no FDUB-pointer will be
 returned.

 This subroutine does not check the legality of the file or
 device name attached to the logical I/O unit specified.

 Examples: Assembly: CALL CHKFDUB,(UNIT)
 LTR 15,15
 BNZ ERROR
 .
 .
 UNIT DC F’6’

 FORTRAN: INTEGER*4 UNIT
 DATA UNIT/6/
 ...
 CALL CHKFDB(UNIT,&99)

 The above examples call CHKFDUB to get a FDUB-pointer for
 the file or device attached to logical I/O unit 6.

 118 CHKFDUB

 MTS 3: System Subroutine Descriptions

 April 1981

 CHKFILE _______

 Subroutine Description

 Purpose: To determine whether a file exists, as well as what access
 the calling program has to the file. This is the easiest
 way to determine whether a scratch file exists without
 creating it.

 Location: Resident System

 Alt. Entry: CHKFIL

 Calling Sequence:

 Assembly: CALL CHKFILE,(name)

 FORTRAN: CALL CHKFIL(name,&rc4,&rc8,&rc12)

 or

 INTEGER*4 CHKFIL,x _
 x = CHKFIL(name) _

 Parameters:

 name is the location of the name of the file (with a ____
 trailing blank).
 x is the fullword-integer value returned if the _
 file exists (see "Values Returned" below).
 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Values Returned:

 If the return code from CHKFILE is zero (or twelve),
 then GR0 contains the access that the calling user
 has to the file as follows:

 1 Read access allowed.
 2 Write-expand access allowed.
 4 Write-change/empty access allowed.
 8 Truncate/renumber access allowed.
 16 Destroy/rename access allowed.
 32 Permit access allowed.

 If more than one type of access is allowed, the value
 returned in GR0 is the sum of the different types of
 access, e.g., GR0=63 implies unlimited access.

 CHKFILE 119

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 The file exists.
 4 The file does not exist.
 8 Unaddressable parameter or hardware/software
 inconsistency.
 12 Access not allowed.

 Note: FORTRAN users wishing to obtain both the return
 codes and access types may use the RCALL sub-
 routine to call CHKFILE.

 Examples: Assembly: CALL CHKFILE,(FNAME)
 LTR 15,15
 BNE NOREAD
 SLL 0,31
 SRL 0,31
 C GR0,=F’1’
 BE READ
 .
 .
 FNAME DC C’2AGA:DATAFILE ’

 FORTRAN: INTEGER*4 CHKFIL,X
 DATA MASK/Z00000001/
 X = CHKFIL(’2AGA:DATAFILE ’)
 X = LAND(X,MASK)
 IF(X.EQ.1) GO TO 10

 EXTERNAL CHKFIL
 INTEGER*4 ADROF,X
 DATA MASK/Z00000001/
 PAR = ADROF(’2AGA:DATAFILE ’)
 CALL RCALL(CHKFIL,2,0,ADROF(PAR),1,X,&100)
 X = LAND(X,MASK)
 IF(X.EQ.1) GO TO 10

 These examples call CHKFILE to determine whether the
 calling program has read access to the file 2AGA:DATAFILE.
 The second FORTRAN example uses the RCALL subroutine to
 obtain both the return code and the return value.

 120 CHKFILE

 MTS 3: System Subroutine Descriptions

 April 1981

 CHKPAR ______

 Subroutine Description

 Purpose: To check the number and data types of parameters passed to
 a subroutine.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL CHKPAR(icode,’string ’,&rc4)

 Parameters:

 icode is a switch indicating the action to be taken _____
 if an error is found by CHKPAR. The legal
 switch values are:

 0 A traceback of the subroutine calls is
 produced and then execution is suspended.
 Execution may be resumed by the $RESTART
 command.
 1 A traceback of the subroutine calls is
 produced and then execution is resumed.
 2 Execution is continued with an error mes-
 sage but without a traceback.
 3 Execution is continued without an error
 message or a traceback.

 In all cases, a return code 4 (RETURN 1) is
 produced if an error is detected.

 string is a string of characters of the form I ______
 (integer), R (real), and X (other) which
 corresponds in data type to the dummy varia-
 bles in the calling sequence of the sub-
 routine being checked. CHKPAR checks only
 REAL*4 and REAL*8 variables, and INTEGER*4
 variables of magnitude less than 1048575.
 All other variables must be indicated by an X
 and are ignored. The string must be enclosed
 in primes and terminated by a blank.

 The letter O may be included in the string to
 indicate that the remaining parameters are
 optional. The letter S may be included to
 stop the checking of parameters before the
 end of the parameter list is encountered.
 The S option is useful if the caller is not

 CHKPAR 121

 MTS 3: System Subroutine Descriptions

 April 1981

 required to set the variable length bit (the
 high-order bit in the last parameter
 address).

 CHKPAR will not differentiate between REAL*4
 and REAL*8 variables.

 rc4 (optional) is the number of a FORTRAN state- ___
 ment to transfer to if the number of parame-
 ters or their data types are not correct. If
 omitted, control will return to the statement
 following the call to CHKPAR.

 Note: Standard OS Type-I(S) calling conventions must be
 used in all subroutine calls. See the section
 "Calling Conventions" in this volume.

 Description: CHKPAR tests the data types of the arguments in the
 subroutine from which CHKPAR was called against the data
 types specified in the string parameter. A value of zero ______
 is legal regardless of data type. If the value is
 nonzero, the absolute value of the variable is taken and
 the high-order byte is tested for zero. If this byte is
 nonzero, the corresponding data type must be R. If this
 byte is zero, the next 4 bits (20-23) must be zero for
 integer variables and nonzero for real variables.

 CHKPAR must be called from the subroutine whose parameter
 list is being checked.

 Examples: FORTRAN: X=10.
 Y=20.
 CALL SUBR(X,Y,Z)
 STOP
 END

 SUBROUTINE SUBR(I,Y,Z)
 CALL CHKPAR(1,’IRX ’,&10)
 Z=FLOAT(I)+Y
 RETURN
 10 WRITE(6,100)
 100 FORMAT(’0ERROR IN CALL TO SUBR’)
 STOP
 END

 In the above example, X is incorrect in the call to SUBR.
 The following type of message is subsequently printed:

 Error in argument number n in call to subroutine SUBR.
 Type should be (integer/real) is (real/integer).
 Integer value is "xxxx", real "xxxx", hex "xxxx",
 character "xxxx".

 122 CHKPAR

 MTS 3: System Subroutine Descriptions

 April 1981

 CHKPAR then produces a traceback and transfers control to
 statement number 10. The third parameter Z in the above
 example is not checked by CHKPAR because it is returned by
 the subroutine SUBR and therefore is not initialized when
 CHKPAR is called.

 FORTRAN: I=10.
 Y=20.
 CALL SUBR(I,Y)
 STOP
 END

 SUBROUTINE SUBR(I,Y,Z)
 CALL CHKPAR(0,’IRX ’,&10)
 Z=FLOAT(I)+Y
 RETURN
 10 WRITE(6,100)
 100 FORMAT(’0ERROR IN CALL TO SUBR’)
 STOP
 END

 In the above example, the following message is printed:

 Number of arguments wrong in call to SUBR.

 CHKPAR then produces a traceback and suspends execution.
 The user may resume execution via the $RESTART command.

 CHKPAR 123

 MTS 3: System Subroutine Descriptions

 April 1981

 124 CHKPAR

 MTS 3: System Subroutine Descriptions

 April 1981

 CLOSEFIL ________

 Subroutine Description

 Purpose: To close a file and release its file buffers.

 Location: Resident System

 Alt. Entry: CLOSFL

 Calling Sequences:

 Assembly: CALL CLOSEFIL,(unit)

 FORTRAN: CALL CLOSFL(unit,&rc4)

 Parameter:

 unit is the location of either ____
 (a) a FDUB-pointer (as returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
 4 Illegal unit parameter specified, or ____
 hardware error or software inconsistency
 encountered.

 Description: A call on this subroutine causes all changed lines in the
 file buffers to be written to the file, thus making the
 file on the disk an up-to-date copy. This subroutine
 closes the file and releases all file buffers being used
 by the file.

 The subroutine WRITEBUF may be called to write the changed
 lines without closing the file and releasing the buffers. _______
 WRITEBUF is more efficient and therefore is generally
 preferred. See the description of WRITEBUF in this
 volume.

 Examples: Assembly: CALL CLOSEFIL,(UNIT)
 .
 .
 UNIT DC CL8’SPRINT’

 CLOSEFIL 125

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: CALL CLOSFL(’SPRINT ’)

 The above examples cause CLOSFIL to update the disk copy
 of the file attached to the logical I/O unit SPRINT.

 126 CLOSEFIL

 MTS 3: System Subroutine Descriptions

 April 1981

 CMD ___

 Subroutine Description

 Purpose: To execute an MTS command from a program and return to the
 program after the command has been executed.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CMD,(char,len)

 or

 CMD char[,len]

 FORTRAN: CALL CMD(char,len)

 Parameters:

 char is the location of a character string containing ____
 an MTS command.
 len is the location of the length of the character ___
 string expressed as either a fullword (INTEGER*
 4) or a halfword (INTEGER*2). If the first two
 bytes of len are zero, it is assumed len ___ ___
 specifies a fullword integer. Otherwise, len is ___
 assumed to be a halfword.

 Note: The complete description for using the CMD macro
 is given in MTS Volume 14, 360/370 Assemblers in _______________________
 MTS. ___

 Description: This subroutine returns to MTS specifying a character
 string to be interpreted as an MTS command. After the
 command has been executed, a return is made to the
 program.

 The command is echoed on *SINK* and/or *MSINK* if the $SET
 ECHO option is ON.

 This subroutine cannot be used properly with character
 strings that specify the following commands:

 DEBUG LOAD
 RUN UNLOAD
 START AT location SIGNON
 RESTART AT location SIGNOFF
 RERUN

 CMD 127

 MTS 3: System Subroutine Descriptions

 April 1981

 If any of these commands are used with CMD, the subroutine
 will not return to the calling program. This would be the
 same as if the MTSCMD subroutine were used instead.

 The START and RESTART commands will work properly unless
 an explicit restart address is given.

 See also the description of the COMMAND subroutine in this
 volume.

 Examples: FORTRAN: CALL CMD(’$SINK FYLEB ’,12)

 The above example calls CMD to reassign *SINK* to the file
 FYLEB.

 Assembly: CALL CMD,(CHAR,LEN)
 .
 .
 CHAR DC C’$CREATE ALPHA ’
 LEN DC F’14’

 CMD ’$CREATE ALPHA ’

 The above two examples call CMD to create the file ALPHA.
 The first uses the CALL macro and the second uses the CMD
 macro.

 128 CMD

 MTS 3: System Subroutine Descriptions

 April 1981

 CMDNOE ______

 Subroutine Description

 Purpose: To execute an MTS command from a program and return to the
 program after the command has been executed.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CMDNOE,(char,len)

 FORTRAN: CALL CMDNOE(char,len)

 Parameters:

 char is the location of a character string containing ____
 an MTS command.
 len is the location of the length of the character ___
 string expressed as either a fullword (INTEGER*
 4) or a halfword (INTEGER*2). If the first two
 bytes of len are zero, it is assumed len ___ ___
 specifies a fullword integer. Otherwise, len is ___
 assumed to be a halfword.

 Description: This subroutine returns to MTS specifying a character
 string to be interpreted as an MTS command. After the
 command has been executed, a return is made to the
 program.

 The command is never echoed on *SINK* and/or *MSINK*,
 regardless of the setting of the $SET ECHO option.

 This subroutine cannot be used properly with character
 strings that specify the following commands:

 DEBUG LOAD
 RUN UNLOAD
 START AT location SIGNON
 RESTART AT location SIGNOFF
 RERUN

 If any of these commands are used with CMDNOE, the
 subroutine will not return to the calling program. This
 would be the same as if the MTSCMD subroutine were used
 instead.

 The START and RESTART commands will work properly unless
 an explicit restart address is given.

 CMDNOE 129

 MTS 3: System Subroutine Descriptions

 April 1981

 See also the description of the COMMAND subroutine in this
 volume.

 Examples: FORTRAN: CALL CMDNOE(’$SINK FYLEB ’,12)

 The above example calls CMDNOE to reassign *SINK* to the
 file FYLEB.

 Assembly: CALL CMDNOE,(CHAR,LEN)
 .
 .
 CHAR DC C’$CREATE ALPHA ’
 LEN DC F’14’

 The above example calls CMDNOE to create the file ALPHA.

 130 CMDNOE

 MTS 3: System Subroutine Descriptions

 April 1981

 CNFGINFO ________

 Subroutine Description

 Purpose: To obtain information about the type of system on which
 the program is running.

 Location: Resident System

 Alt. Entry: CFGINF

 Calling Sequences:

 Assembly: L r,=V(CNFGINFO)
 USING CNFGINFD,r

 Parameters:

 r is a general register containing the address of _
 the CNFGINFO table.

 Description: The information available in the table is described by the
 dsect given on the following pages (from the file
 *CNFGINFODSECT).

 Example: Assembly: L 3,=V(CNFGINFO)
 USING CNFGINFD,3
 TM CIFEATUR,CI370 System 370?
 BZ SYS360
 .
 .
 COPY *CNFGINFODSECT

 The above example illustrates how a program may determine
 whether it is running on a System/370- or System/360-
 compatible machine.

 FORTRAN programs can obtain the system information by
 creating a common section describing the dsect. A RIP
 loader record (RIP CFGINF) must be inserted into the
 FORTRAN object file to force the loader to resolve the
 symbol CFGINF from the low-core symbol table.

 CNFGINFO 131

 MTS 3: System Subroutine Descriptions

 April 1981

 **
 *
 * Dsect of information concerning configuration of machine
 *
 * (Last revised on January 12, 1984)
 *
 **
 CNFGINFD DSECT
 CISYSTEM DC X’0370’ Type of system (360/370)
 CICPUID DS 0XL8 Result of store CPU ID on lowest
 * address CPU in the system
 CIVERSCD DC X’02’ Version code
 CIID# DC X’000001’ Serial number of CPU
 CIMODEL DC X’0580’ Model number of system
 CIMCEL DC H’0’ Max length of MCEL
 *
 * The following two fields will be zero unless the version
 * above is X’FF’ indicating that we are running under
 * a hypervisor (aka virtual machine). When the version
 * code is X’FF’ the serial number and model number
 * stored in CIID# and CIMODEL are those for the real
 * machine on which the hypervisor is running and
 * additional information about the hypervisor
 * is stored as an extended CPU ID, the length and
 * location of which are given by CIEXTIDL and CIEXTID.
 * CIMCEL gives the max. MCEL length stored by the
 * hypervisor.
 *
 CIEXTIDL DC H’0’ Length of extended CPU ID
 CIEXTID DC A(0) Location of extended CPU ID
 *
 * An extended CPU ID is 16 bytes & has the following format:
 *
 * DS CL8 Hypervisor name (EBCDIC)
 * DS XL3 Hypervisor version
 * DS X Version code
 * DS H Max. MCEL
 * DS H CPU address
 *
 * These 16 bytes will be repeated once for each
 * hypervisor that is in use. The version code, Max. MCEL
 * length, and CPU address are those of the machine (real
 * or virtual) on which the hypervisor is running.
 *
 *
 * The following 64 bits are each associated with a particular
 * feature or RPQ as indicated. See Appendix D, Facilities,
 * in "IBM System/370 Principles of Operation" (GA22-7000-8)
 * for additional information.
 *
 CIFEATUR DC X’F7806A1C00000000’
 *
 * First byte

 132 CNFGINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 *
 CIDEC EQU X’80’ Decimal instructions - AP,CP,DP,ED,
 * EDMK,MP,SP,SRP,ZAP
 CIFLPT EQU X’40’ Floating point - ADR,AD,AER,AE,AWR,
 * AW,AUR,AU,CDR,CD,CER,CE,DDR,DD,DER,
 * DE,HDR,HER,LDR,LD,LER,LE,LTDR,LTER,
 * LCDR,LCER,LNDR,LNER,LPDR,LPER,MDR,MD,
 * MER,ME,STD,STE,SDR,SD,SER,SE,
 * SWR,SW,SUR,SU
 CI370 EQU X’20’ Standard 370 features -
 * MVCL,CLCL,MC,STCTL,LCTL,CLM,STCM,ICM,
 * STIDP,STIDC,SCK,STCK,SIOF,CLRIO,
 * HDV,Fetch protect,
 * and SRP if CTDEC also on
 CI370TRN EQU X’10’ 370 translation feature -
 * LRA,PTLB,RRB,STNSM,STOSM
 CI370MP EQU X’08’ 370 multiprocessor feature - SIGP,SPX
 * STAP,STPX
 CICNDSWP EQU X’04’ 370 conditional swapping feature -
 * CS and CDS
 CIPSWKEY EQU X’02’ PSW-key handling feature - IPK,SPKA
 CICPUTIM EQU X’01’ CPU timer and clock comparator -
 * SCKC,SPT,STCKC,STPT
 *
 * Second byte
 *
 CIEXTFLP EQU X’80’ Extended-precision floating point -
 * AXR,LRDR,LRER,MXR,MXDR,MXD,SXR
 CIMOD67 EQU X’40’ 360/67 standard features - BAS,BASR,
 * STMC,LRA,LMC, Fetch protect
 CI32BT67 EQU X’20’ 360/67 with 32-bit addressing
 CI67DCTL EQU X’10’ 360/67 extended direct control - WRD
 CI67EXFP EQU X’08’ 360/67 extended-precision floating
 * point - MDDR,ADDR,SDDR,MDD,ADD,SDD
 CI67MXFP EQU X’04’ 360/67 mixed-precision floating
 * point - LX,AX,SX,MX,DX
 CISWPR EQU X’02’ 360/67 RPQ swap register instruction
 * SWPR
 CISLT EQU X’01’ 360/67 RPQ search list instruction
 * SLT. The SLT instruction is simulated
 * in software by the supervisor when
 * SLT isn’t available in the hardware.
 *
 * Third byte
 *
 CIMXRDD EQU X’80’ 360/67 mixed-precision floating
 * point with store rounded - LX,AX,
 * SX,STRE,STRD
 CIDIRCTL EQU X’40’ 370 direct control facility -
 * RDD, WRD
 CIBAS EQU X’20’ 370 branch and save facility -
 * BAS and BASR
 CIEXTADR EQU X’10’ 31-bit (extended) addressing facility

 CNFGINFO 133

 MTS 3: System Subroutine Descriptions

 April 1981

 CICIDA EQU X’08’ Channel indirect data addressing
 * (CIDA) facility
 CICSSW EQU X’04’ Channel-set switching facility -
 * CONCS, DISCS
 CICLRIO EQU X’02’ Clear I/O feature
 CIDAS EQU X’01’ Dual address space (DAS) facility -
 * EPAR, ESAR, IAC, IVSK, LASP, MVCP,
 * MVCS, MVCK, PC, PT, SAC, SSAR
 * Fourth byte
 *
 CIEXT EQU X’80’ Extended facility (Talk about
 * names with little information
 * content!) - IPTE, TPROT, Common
 * segment facility, Low-address
 * protection (does not include
 * the MVS dependent instructions).
 CIEXTRA EQU X’40’ Extended real addressing facility -
 * 26-bit page-frame real addresses
 * in the page-table entry for 4K-byte
 * pages.
 CIEXTSIG EQU X’20’ External signal facility
 CIFREL EQU X’10’ Fast release facility
 CIHDV EQU X’08’ Halt device facility
 CIIOELOG EQU X’04’ I/O extended logout facility
 CILCLOG EQU X’02’ Limited channel logout facility
 CIMVCIN EQU X’01’ Move inverse - MVCIN
 *
 * FIFTH BYTE
 *
 CICLRCH EQU X’80’ Recovery extensions - CLRCH
 CISEGPRT EQU X’40’ Segment protection facility
 CISERSIG EQU X’20’ Service signal facility
 CISIOFQ EQU X’10’ Start-I/O-fast queuing
 CISKIEXT EQU X’08’ Storage-key-instructions extensions -
 * ISKE, RRBE, SSKE
 CISK4KB EQU X’04’ Storage-key 4K-byte block
 CIRIO EQU X’02’ Suspend and resume - RIO
 CITB EQU X’01’ Test block - TB
 *
 * Sixth byte
 *
 CIBIDAWS EQU X’80’ 31-big (BIG) IDAWS
 CIMVSEXT EQU X’40’ MVS dependent instructions that
 * are part of the extended facility.
 *
 * Seventh byte Unused for now
 * Eighth byte Unused for now
 *
 *
 * The following field contains the address (from a STAP
 * instruction) of the processor the system is running on.
 * If there is more than one processor in the configuration,
 * the lowest address of any online processor is used.

 134 CNFGINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 *
 CICPUAD DS H Address of the CPU running on
 *
 * The following field contains a machine hardware level
 * number or other similar identification needed by the
 * model-dependent machine-check handler to determine
 * which of several recovery actions to take for machine
 * checks.
 *
 CIMCHLVL DC H’0’
 *
 CIXTRA DS XL12 Unused
 *
 * System software version numbers
 * One number for the minimum version for the entire system,
 * one for the supervisor, one for the MTS command language/
 * file system, one for the spooling system, and one spare.
 * The format of each version number is the distribution
 * number times 1000.
 *
 CIVGM DC FE3’5.1’ Guaranteed minimum version
 CIVUMMPS DC FE3’5.1’ Supervisor version
 CIVMTS DC FE3’5.1’ MTS cmnd lang/file system version
 CIVSPOOL DC FE3’5.1’ Spooling system version
 CIVXTRA DC 3FE3’0’ Spare
 *
 * The following pairs of words give the assignment of virtual
 * memory used by the supervisor and MTS. Each entry consists
 * of two words giving the first and last location in a
 * particular type of VM. The various types can be assumed to
 * be contiguous, non-overlapping areas, but not necessarily
 * contiguous with one another.
 *
 CIVMABS DC A(0,X’FFFFF’) Unpaged shared memory
 CIVMSH DC A(X’100000’,X’5FFFFF’) Paged shared memory
 CIVMSYS DC A(X’600000’,X’7FFFFF’) Private system storage
 CIVMUSER DC A(X’800000’,X’EFFFFF’) Private user storage
 * Segments 6 15 (F) is currently
 * unused at UM.
 *
 * The following word gives the first address in the segment
 * used by the virtual machine support in the supervisor.
 *
 CIVMSEG DC A(X’A00000’)
 *
 * The following halfword contains a code indicating the
 * installation where we are running followed by the
 * character name of the installation.
 *
 CIICODE DC Y(CIIUM) Numeric installation code
 CIIOTHER EQU 0 Unknown/other
 CIIUM EQU 1 University of Michigan
 CIIUBC EQU 2 University of British Columbia

 CNFGINFO 135

 MTS 3: System Subroutine Descriptions

 April 1981

 CIIUNE EQU 3 University of Newcastle upon Tyne
 CIIUQV EQU 4 University of Alberta
 CIIWSU EQU 5 Wayne State University
 CIIRPI EQU 6 Rensselaer Polytechnic Institute
 CIISFU EQU 7 Simon Fraser University
 * CIIEMB EQU 8 Unused (was EMBRAPA - Brasil)
 CIIRIO EQU 9 CNPQ/LCC - Brasil
 CIIUD EQU 10 University of Durham
 CIIAMD EQU 11 Amdahl
 CIIUZ EQU 12 University of Zagreb, Yugoslavia
 *
 CIINAME DC CL24’MTS Ann Arbor ’ Installation name
 *
 * The following region contains the Ramrod system name
 * for the currently loaded resident system, followed
 * by the time and date when the currently loaded resident
 * system was written.
 *
 CIRSNAME DC CL40’ ’ Resident system name
 CIRSTIME DC CL8’ ’ Resident system time (hh:mm:ss)
 CIRSDATE DC CL13’ ’ Resident system date (www mmm dd/yy)
 * where ’www’ is the day of the week,
 * ’mmm’ is the month, and
 * ’dd/yy’ is the date and year.
 *
 * The following word contains the "SHARE" code of the
 * installation where this system is installed. If the
 * installation doesn’t belong to SHARE and thus doesn’t
 * have a SHARE code, one is made up anyway.
 *
 DS 0F
 CISHARE DC CL3’UM ’ Local installation’s "SHARE" code
 DC CL1’ ’ Unused, will be blank
 * ’UM ’ - University of Michigan
 * ’UBC’ - University of British Columbia
 * ’NCL’ - University of Newcastle upon Tyne
 * ’UQV’ - University of Alberta
 * ’WSU’ - Wayne State University
 * ’RPI’ - Rensselaer Polytechnic Institute
 * ’SFU’ - Simon Fraser University
 * ’EMB’ - EMBRAPA - Brasil (inactive)
 * ’RIO’ - CNPQ/LCC - Brasil
 * ’DUR’ - University of Durham
 * ’AMD’ - Amdahl
 * ’UZ’ - University of Zagreb, Yugoslavia
 *
 CIHNAME DC CL8’UM ’ Host name for those installations
 * that run more than one production
 * MTS system.
 CIREALM DC A(X’01FE000’) Real memory size of machine. This
 * value can also be thought of as the first
 * invalid real memory address.
 *

 136 CNFGINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 CIPRIVAT DC A(X’600000’,X’FFFFFF’) Address range of storage
 * private to each task.

 CNFGINFO 136.1

 MTS 3: System Subroutine Descriptions

 April 1981

 136.2 CNFGINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 CNTLNR ______

 Subroutine Description

 Purpose: To count all or a subset of the lines in a line file. ____

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CNTLNR,(unit,first,last,cnt)

 FORTRAN: CALL CNTLNR(unit,first,last,cnt,&rc4,&rc8,
 &rc12,&rc16,&rc20,&rc24,&rc28)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 first is the location of a fullword containing the _____
 internal line number of the first line to be ________
 counted.
 last is the location of a fullword containing the ____
 internal line number of the last line to be ________
 counted.
 cnt is the location of a fullword in which the ___
 count of the number of lines in the specified
 range will be returned.
 rc4,...,rc28 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 The file was counted successfully.
 4 The file does not exist or unit is invalid. ____
 8 Hardware error or software inconsistency
 encountered.
 12 Read access not allowed.
 16 Locking the file for read will result in a
 deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent use
 of a shared file).
 24 Parameters not addressable or inconsistent parame-
 ters specified (first greater than last, etc.). _____ ____
 28 The file is not a line file.

 CNTLNR 137

 MTS 3: System Subroutine Descriptions

 April 1981

 Notes: If first and last do not correspond to actual line _____ ____
 numbers in the file, the next and previous line
 numbers, respectively, will be used.

 In MTS, the internal line number (e.g., 2100) is
 equal to the external line number (e.g., 2.1)
 times one thousand.

 Examples: Assembly: CALL GETFST,(UNIT,FSTLNR)
 CALL GETLST,(UNIT,LSTLNR)
 CALL CNTLNR,(UNIT,FSTLNR,LSTLNR,CNT)
 .
 .
 UNIT DC F’4’
 FSTLNR DS F First line number
 LSTLNR DS F Last line number
 CNT DS F Count

 FORTRAN: INTEGER*4 UNIT,CNT
 DATA UNIT/4/
 ...
 CALL CNTLNR(UNIT,-2147483648,2147483647,CNT)

 The above examples illustrate two ways to count all of the
 lines of the line file attached to logical I/O unit 4.

 138 CNTLNR

 MTS 3: System Subroutine Descriptions

 April 1981

 COMMAND _______

 Subroutine Description

 Purpose: To execute an MTS command from a program and return to the
 program after the command has been executed.

 Location: Resident System

 Alt. Entry: COMMND

 Calling Sequences:

 Assembly: CALL COMMAND,(char,length,sws,sumry,code,
 origin),VL

 FORTRAN: CALL COMMND(char,length,sws,sumry,code,origin,
 &rc4,&rc8,&rc12)

 Parameters:

 char is the location of a character string con- ____
 taining an MTS command.
 length is the location of the length of the charac- ______
 ter string expressed as either a fullword
 (INTEGER*4) or a halfword (INTEGER*2). If
 the first two bytes of length are zero, it is ______
 assumed length specifies a fullword integer; ______
 otherwise, length is assumed to be halfword. ______
 sws is the location of a fullword of switches ___
 defined as follows:

 bits 30-31: command echo control.
 00 echo command if $SET ECHO=ON
 01 always echo the command
 10 do not echo the command
 bits 28-29: command commentary control.
 00 print commentary if command
 was echoed
 01 always print commentary
 10 do not print commentary
 bits 0-27: unused (must be zero).

 sumry (optional) is the location of a fullword _____
 integer giving the error/status summary.
 code (optional) is the location of a fullword ____
 integer giving more detailed information
 about the error/status summary.
 origin (optional) is the location of a fullword ______
 integer giving the originator of the error/

 COMMAND 139

 MTS 3: System Subroutine Descriptions

 April 1981

 status information.
 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return codes occur.

 Return Codes:

 0 Command successfully executed.
 4 Command not successfully executed (sumry ≥ 2). _____
 8 Reserved for future use.
 12 Invalid parameters to COMMAND subroutine.

 Description: This subroutine returns to MTS specifying a character
 string to be interpreted as an MTS command. After the
 command has been executed, a return is made to the
 program.

 In addition, the COMMAND subroutine controls the echoing
 of the command text and the printing of any command
 commentary generated by the execution of the command, such
 as confirmation messages. This allows a program to
 emulate the command processing of MTS.

 Normally, MTS commands are echoed when $SET ECHO=ON (the
 default) and the command line was not read from the user’s ___ ___
 terminal. The COMMAND subroutine will emulate this case
 when bits 30-31 of sws are zero; the other settings allow ___
 the program to have explicit control of echoing.

 Normally, command commentary is printed if the command was
 read from the user’s terminal or if the command was __
 echoed. The COMMAND subroutine will emulate this case
 when bits 28-29 of sws are zero; the other settings allow ___
 the program to have explicit control of command commentary
 printing. The printing of command commentary is independ-
 ent of the $SET TERSE option. When TERSE=ON, the commen-
 tary may be abbreviated (or suppressed in some cases).

 A common use of this subroutine is the case in which the
 command line was read from the user’s terminal or the
 command was already echoed by the program. In this case,
 the command commentary should be printed but the command
 not echoed; bits 28-31 of sws should be set to 0110. In ___
 the case in which the command was read from a file and has
 not been echoed by the user’s program, bits 28-31 should
 be set to zero.

 When sws is zero, the COMMAND subroutine will behave ___
 exactly as the CMD subroutine. When bits 28-31 of sws are ___
 1010, the COMMAND subroutine will behave exactly the same
 as the CMDNOE subroutine.

 The sumry, code, and origin parameters may be given to _____ ____ ______
 obtain error/status information from the system (see the

 140 COMMAND

 MTS 3: System Subroutine Descriptions

 April 1981

 description of the CSGET, CSSET subroutine for further
 details).

 This subroutine cannot be used properly with character
 strings that specify the following commands:

 DEBUG LOAD
 RUN UNLOAD
 START AT location SIGNON
 RESTART AT location SIGNOFF
 RERUN

 If any of the above commands are used with COMMAND, the
 subroutine will not return to the calling program. This
 would be the same as if the MTSCMD subroutine were used
 instead. The START and RESTART commands will work proper-
 ly unless an explicit restart address is given.

 Examples: Assembly: CALL COMMAND,(CHAR,LEN,SWS),VL
 .
 .
 CHAR DC C’$CREATE ALPHA ’
 LEN DC A(L’CHAR)
 SWS DC X’00000006’

 FORTRAN: CALL COMMND(’$CREATE ALPHA ’,14,6)

 The above two examples call COMMAND to create the file
 ALPHA. The command commentary is printed but the command
 is not echoed, thus making it appear as if MTS had read
 the command instead of the program.

 COMMAND 141

 MTS 3: System Subroutine Descriptions

 April 1981

 142 COMMAND

 MTS 3: System Subroutine Descriptions

 April 1981

 CONTROL _______

 Subroutine Description

 Purpose: To provide an interface between the user and the CONTROL
 entry in the device support routines (DSRs). This sub-
 routine allows the user to execute control operations on
 files and devices.

 Location: Resident System

 Alt. Entry: CNTRL

 Calling Sequences:

 Assembly: CALL CONTROL,(info,len,unit,ret)

 FORTRAN: CALL CNTRL(info,len,unit,ret,&rc4,&rc8,&rc12)

 Parameters:

 info is the location of the device control informa- ____
 tion to be passed to the device support
 routines.
 len is the location of the halfword (INTEGER*2) ___
 length of the control information.
 unit is the location of either ____
 (a) a fullword integer FDUB-pointer (as returned
 by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 ret is the location of an area of 27 fullwords (108 ___
 bytes) to receive the return information from
 the device support routines. This area will
 contain:
 Word 1: return code from the DSR
 2: length of the DSR message, or zero
 3-27: DSR error message (if given)
 This parameter is optional and can be omitted
 (if called from FORTRAN) or zero (if called from
 assembly language).
 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Successful return from DSR.
 4 Illegal parameter specification.

 CONTROL 143

 MTS 3: System Subroutine Descriptions

 April 1981

 8 Nonzero return code from DSR. This return code is
 given in ret(1). ___
 12 DSR error. The DSR return code is in ret(1), the ___
 DSR message length is in ret(2), and the message ___
 is in ret(3)-ret(27). ___ ___

 Note: The return code given by the CONTROL subroutine is
 not the return code given by the DSR. The return ___
 code from the subroutine is given in GR15 and used
 to indicate the existence of a DSR return code
 which is given in ret. ___

 Description: Only certain file and device types currently allow control
 operations. These are:

 Type Control Commands ____ _______ ________

 MNET - Any of the Merit/UMnet Computer Network
 device commands as normally entered after a
 percent sign "%". The percent sign should
 not be given as part of the control
 information.
 MRXA - Any of the Memorex device commands as
 TTY normally entered after a percent sign"%".
 The percent sign should not be given as part
 of the control information.
 3270 - Any of the IBM 3278/Lee Data Terminal device
 commands as normally entered after a percent
 sign "%". The percent sign should not be
 given as part of the control information.
 3036 - Any IBM 3278 device command.
 3066 - Any IBM 3278 device command.
 FDSK - Any control command (floppy disk).
 9TP - Any control command (9-track magnetic tape).
 HPTR - Any control command legal for *PRINT*,
 HPCH PUNCH*, or *BATCH*, respectively.
 HBAT
 FILE - See MTS Volume 1, The Michigan Terminal _____________________
 System. ______
 SEQF - See MTS Volume 1, The Michigan Terminal _____________________
 System. ______
 BNCH - Any control command for the benchmark
 driver.

 144 CONTROL

 MTS 3: System Subroutine Descriptions

 April 1981

 The return codes from the DSRs are summarized below:

 Files

 0 - Control operation successful
 4 - File does not exist or is not available
 8 - Hardware error or software inconsistency
 12 - No access allowed to file
 16 - Cannot wait to lock file due to deadlock
 20 - Cannot lock file (not asked to wait to lock)
 24 - Bad parameter in RENUMBER request
 28 - Tried to renumber a file which is not a line
 file
 32 - Inconsistent size requested
 36 - No physical disk space available
 40 - Account does not have enough file space
 allocated
 44 - Error return from setting program key operation
 48 - Error return from keyword scan operation
 52 - Error return from setting privilege operation
 56 - Error return from SAVE/NOSAVE operation
 60 - Error return from TOUCH operation

 UMnet/Merit
 0 - Successful return
 4 - Should not occur
 8 - Control command not allowed--the remote host is
 attempting to send a record
 12 - Successful command with returned text
 16 - Connection is closed: no I/O may be done
 20 - Invalid syntax or context for control command
 24 - Attention interrupt received from network
 64 - Internal network error

 Magnetic Tapes
 0 - Successful return
 4 - End-of-file (BSR or FSR) or end-of-tape (FSF)
 8 - Unit check
 12 - End-of-tape
 16 - Invalid CONTROL command or parameter, file not
 found (POSN), or permanent read/write error
 20 - Attempt to write on unexpired file or without
 ring
 24 - Fatal error
 28 - Invalid volume, header, or trailer label
 32 - Invalid I/O region or mode/blocking error
 36 - Invalid blocking parameter
 40 - Invalid mode
 44 - Access not allowed

 CONTROL 145

 MTS 3: System Subroutine Descriptions

 April 1981

 Floppy Disks
 0 - Successful return
 4 - Should not occur
 8 - Should not occur
 12 - Should not occur
 16 - Should not occur
 20 - Invalid CONTROL command or parameter

 See the terminal and tape descriptions in MTS Volume 4,
 Terminals and Networks in MTS, and MTS Volume 19, Tapes ________________________________ _____
 and Floppy Disks, for further details on the different ________________
 types of control commands that may be specified.

 There is a macro CNTRL in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for CNTRL in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Example: FORTRAN: INTEGER*4 RET(27)
 INTEGER*2 LEN
 LEN = 3
 CALL CNTRL(’REW’,LEN,6,RET,&100,&200,&300)
 ...
 100 no control entry exit
 ...
 200 nonzero return code from DSR exit
 ...
 300 DSR error exit

 Assembly: CALL CONTROL,(INFO,LEN,UNIT,RET)
 C 15,=F’12’
 BH BADRC
 B *+4(15)
 B SUCCESS normal exit
 B ERROR1 no control entry exit
 B ERROR2 nonzero DSR return code
 B ERROR3 DSR error exit
 .
 .
 INFO DC C’REW’
 LEN DC Y(L’INFO)
 UNIT DC F’6’
 RET DS 2F,CL100

 The above examples set up a REW control command to the
 file or device attached to logical I/O unit 6.

 146 CONTROL

 MTS 3: System Subroutine Descriptions

 April 1981

 COST ____

 Subroutine Description

 Purpose: To obtain the accumulated costs incurred by the current
 signon.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL COST

 FORTRAN: amount=COST(0)

 PL/I(F): amount=PLCALLF(COST,f0);
 amount=PLCALLE(COST,f0);
 amount=PLCALLD(COST,f0);

 Parameter:

 f0 is a fullword (FIXED BINARY(31)) location con- __
 taining the integer zero.

 Values Returned:

 GR0 contains the cost of the current job in centi-
 cents (ten thousandths of a dollar).
 FR0 contains the doubleword cost of the current job
 in dollars.

 Return Codes:

 0 Successful return.
 >0 Fatal error (should never occur).

 Description: The result includes all billable amounts for the current
 signon to the time of the subroutine call with the
 exception of charges for permanent file storage, tape- _________
 drive time for currently mounted tapes, unreleased paper-
 tape output, and open outbound Merit connections.

 Examples: Assembly: CALL COST
 STD 0,CUR$
 .
 .
 CUR$ DS D

 The above example returns the current cost in dollars in
 FR0 and stores the result in location CUR$.

 COST 147

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: INTEGER*4,CUM,REMAIN,COST
 CALL GUINFO(22,REMAIN)
 CALL GUINFO(32,CUM)
 REMAIN=REMAIN-COST(0)-CUM

 The above example calls the GUINFO subroutine to determine
 the maximum charge and cumulative charge used for the
 signon ID at the time of signon, calls COST to determine
 the cost of the current job, and then calculates a value
 for the charge remaining.

 PL/I(F): IF PLCALLF(COST,F0) > COSTLIM
 THEN GO TO END;
 DECLARE PLCALLF RETURNS(FIXED BINARY(31)),
 COST ENTRY,
 F0 FIXED BINARY(31) INITIAL(0),
 COSTLIM FIXED BINARY(31);

 The above example calls COST to determine whether the
 current job has exceeded a certain charge limit; if so,
 the program is terminated.

 148 COST

 MTS 3: System Subroutine Descriptions

 April 1981

 CREATE ______

 Subroutine Description

 Purpose: To create a file.

 Location: Resident System

 Alt. Entry: CREATE#

 Calling Sequence:

 Assembly: CALL CREATE,(name,size,vol,type)

 FORTRAN: CALL CREATE(name,size,vol,type,&rc4,&rc8,&rc12,
 &rc16,&rc20,&rc24,&rc28)

 Parameters:

 name is the location of the name (with a trailing ____
 blank) of the file to be created.
 size is the location of a fullword integer containing ____
 two halfwords of information. The first half-
 word specifies the maximum expandable size of
 the file in pages (4096 bytes per page) or in
 tracks (7294 bytes per track); the type parame- ____
 ter indicates whether pages or tracks is being
 specified. If this halfword is zero, a default
 of 32,767 pages is used. The second halfword
 specifies the requested initial size of the file
 in pages or in tracks. The use of tracks is
 obsolete and is not recommended.
 vol is the location of the name of the disk volume ___
 (as a six-character name) on which to create the
 file, or zero (the recommended value), in which
 case any available disk volume will be used.
 type is the location of a fullword integer which ____
 indicates the type of file to create as well as
 whether the initial size and maximum expandable
 size requests are specified in pages or tracks.
 0 - line file, sizes in tracks
 1 - sequential file, sizes in tracks
 2 - sequential-with-line-numbers file, sizes
 in tracks
 256 - line file, sizes in pages
 257 - sequential file, sizes in pages
 258 - sequential-with-line-numbers file, sizes
 in pages
 rc4,...,rc28 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 CREATE 149

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 Successful return.
 4 The file already exists.
 8 Illegal type parameter specified. ____
 12 Size parameter too large. ____
 16 No space available for a file of that size.
 20 Illegal parameter in calling sequence.
 24 Hardware error or software inconsistency
 encountered.
 28 The space allotted to this account has been
 exceeded.

 Examples: Assembly: CALL CREATE,(FNAME,FSIZE,FVOL,FTYPE)
 .
 .
 FNAME DC C’DATAFILE ’
 FSIZE DS 0F
 MSIZE DC H’0’ Default maximum size
 ISIZE DC H’1’ Initial size
 FVOL DC F’0’
 FTYPE DC F’256’

 FORTRAN: CALL CREATE(’DATAFILE ’,1,0,256,&100,&200)

 These examples will create a line file by the name of
 DATAFILE with an initial size of 1 page and a default
 maximum expandable size of 32,767 pages.

 150 CREATE

 MTS 3: System Subroutine Descriptions

 April 1981

 CRYPT _____

 Subroutine Description

 Purpose: To encrypt or decrypt data according to a given user
 password.

 Location: Resident System

 Calling sequences:

 Assembly: CALL CRYPT,(area,alen,flag,work,key,lkey)

 FORTRAN: CALL CRYPT(area,alen,flag,work,key,lkey,
 &rc4,&rc8,&rc12,&rc16)

 Parameters:

 area is the location of the region that is to be ____
 processed by CRYPT. Upon return, the contents
 of the region will have been replaced by the
 converted data. This region must be at least 8
 bytes long.
 alen is the location of a fullword integer giving the ____
 length of area. It must be greater than 8. ____
 flag is the location of a fullword integer indicating ____
 encryption or decryption (0=encryption;
 1=decryption).
 work is the location of a doubleword. Both words ____
 must be set to zero for the first call with a
 particular key and not changed until a different ___
 key is to be used. ___
 key is the location of an encryption key. key can ___ ___
 be any length. key must be positive. ___
 lkey is the location of a fullword integer length of ____
 the encryption key.
 rc4,...,rc16 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return codes:

 0 Successful return. area contains converted data. ____
 4 alen was less than 8. ____
 8 flag was neither 0 nor 1. ____
 12 lkey was zero or negative. ____
 16 Hardware error or software inconsistency.

 Description: A call to this subroutine encrypts the line at location
 area with length alen using the *ENCRYPT algorithm. The ____ ____
 encryption password used is key with length lkey. ___ ____

 CRYPT 151

 MTS 3: System Subroutine Descriptions

 April 1981

 Upon initial entry to the subroutine, key is encrypted ___
 into an 8-byte doubleword and stored in the location work. ____
 This doubleword is used as an encryption code with a
 subroutine called DCRYPT, which takes three items as
 input. The first is a doubleword of data from area, the ____
 second is the computed value of work, and the last is the ____
 value of flag. ____

 The DCRYPT subroutine is called repeatedly by CRYPT to
 encrypt successive doublewords from area. Each time the ____
 DCRYPT subroutine is called it performs a loop 32 times
 using two different bits of the key at each iteration.
 The first of these two bits indicates which of two
 translate tables is used to translate (using the machine
 translate instruction TR) the doubleword from. The two
 translate tables consist of distinct random permutations
 of all byte values from 0 to 255. The second bit is used
 to determine whether the doubleword is to be rotated by 3
 or 5 bits. Finally, the iteration number is added to the
 low-order end of the 64-bit word.

 The encryption algorithm is more efficient if area is ____
 fullword-aligned.

 Further details on the algorithm can be found by looking
 at the source code (written in 360/370 assembler language)
 which is located in the file *ENCRYPT(2000).

 152 CRYPT

 MTS 3: System Subroutine Descriptions

 April 1981

 CSGET, CSSET ____________

 Subroutine Description

 Purpose: To enable the user to retrieve and set command status
 information.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL CSGET,(sumry,code,origin),VL

 CALL CSSET,(sumry,code,origin),VL

 FORTRAN: CALL CSGET(sumry,code,origin,&rc4)

 CALL CSSET(sumry,code,origin,&rc4)

 Parameters:

 sumry is the location of a fullword integer giving _____
 the error/status summary. The values may be:

 0 - normal command status
 1 - warning or informational message
 2 - command error

 Other values are illegal.
 code is the location of a fullword integer giving ____
 more detailed information about the error/
 status summary. For MTS commands, the system
 will set the following values:

 0 - normal command status
 1 - untrapped attention interrupt
 2 - untrapped program interrupt
 3 - SVC error
 4 - SVC EXIT
 5 - untrapped timer interrupt
 100 - command syntax error
 101 - illegal with run-only program
 102 - illegal in LSS (limited-state) mode
 103 - only legal from CC Staff ccid
 104 - only legal from privileged ccid
 105 - error occurred while loading CLS
 106 - error return from CLS
 200 - unable to obtain sufficient storage
 201 - user responded to prompt with CANCEL

 CSGET, CSSET 152.1

 MTS 3: System Subroutine Descriptions

 April 1981

 For other commands, the system will set the
 value:

 -1 - unassigned

 In the future, each CLS and many public
 programs will have published lists of codes
 giving their error/status values. For the
 present, this value is almost always set to
 -1. User programs calling CSSET may select
 their own set of codes; the values must be ≥
 -1.
 origin (optional) is the location of a fullword ______
 giving the originator of the error/status
 information. If this parameter is omitted on
 a call to CSSET, the originator is set to -1
 (indicating an undefined/undeclared state).
 Currently, only MTS sets the originator code
 to 1. In the future, each CLS and many
 public programs will have their own unique
 originator codes. For the present, user
 programs should either omit this parameter or
 set it to -1 when calling CSSET.
 &rc4 (optional) is a statement label to transfer ____
 to if a nonzero return code occurs.

 Return Codes:

 0 Status set or retrieved successfully.
 4 Illegal call to CSGET or CSSET (illegal code, bad
 parameter list, no VL-bit specification, etc.).

 Description: The CSGET subroutine may be used to retrieve command
 status information detailing the success or failure of a
 particular command. Currently, command status information
 is provided by the system for MTS commands. In the
 future, each CLS and many public files will provide more
 detailed command status information.

 User programs may call CSSET to set private command status
 information. This information may be retrieved by a
 subsequent call to CSGET. Note: When using CSSET and
 CSGET with user programs, sumry may be set to zero if and _____
 only if code is set to zero. ____

 This command status information is useful primarily in two
 situations:

 (1) User programs that have called the COMMAND sub-
 routine may call CSGET to determine whether the
 MTS command executed properly. The sumry, code, _____ ____
 and origin values obtainable by calling CSGET are ______
 also available by specifying additional parameters

 152.2 CSGET, CSSET

 MTS 3: System Subroutine Descriptions

 April 1981

 on the COMMAND subroutine.
 (2) MTS command macros may be constructed to determine
 whether an MTS command executed properly. The
 sumry, code, and origin values are available as _____ ____ ______
 the predefined system macro variables CS_SUMMARY,
 CS_CODE, and CS_ORIGIN, respectively.

 Examples: Assembly: CALL CSGET,(SUMRY,CODE,ORIGIN),VL
 .
 .
 SUMRY DS F
 CODE DS F
 ORIGIN DS F

 FORTRAN: INTEGER*4 SUMRY,CODE,ORIGIN
 CALL CSGET(SUMRY,CODE,ORIGIN)

 CSGET, CSSET 152.3

 MTS 3: System Subroutine Descriptions

 April 1981

 152.4 CSGET, CSSET

 MTS 3: System Subroutine Descriptions

 April 1981

 DESTROY _______

 Subroutine Description

 Purpose: To destroy a file.

 Location: Resident System

 Alt. Entry: DESTRY

 Calling Sequence:

 Assembly: CALL DESTROY,(name)

 FORTRAN: CALL DESTRY(name,&rc4,&rc8,&rc12,&rc16,&rc20,
 &rc24,&rc28)

 Parameters:

 name is the location of the name (with a trailing ____
 blank) of the file to be destroyed.
 rc4,...,rc28 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
 4 name is not a file and therefore cannot be ____
 destroyed.
 8 Reserved for future use.
 12 File does not exist.
 16 Locking the file for destroying will result in a
 deadlock.
 20 Destroy access not allowed.
 24 Error in calling parameter, hardware error, or
 software inconsistency encountered.
 28 Automatic wait for (shared) file was interrupted.

 If the return code is not zero, the file was not
 destroyed.

 Note: If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from DESTROY with a return code of 28.

 DESTROY 153

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: FORTRAN: CALL DESTRY(’DATAFILE ’,&2,&2,&9,&9,&99,&99,&99)

 Assembly: CALL DESTROY,(FNAME)
 .
 .
 FNAME DC C’DATAFILE ’

 These examples will destroy the file DATAFILE.

 154 DESTROY

 MTS 3: System Subroutine Descriptions

 April 1981

 DISMOUNT ________

 Subroutine Description

 Purpose: To release magnetic and paper tapes, Audio Response Unit
 lines, and connections on the Merit Computer Network.

 Location: Resident System

 Alt. Entry: DISMNT

 Calling Sequences:

 Assembly: CALL DISMOUNT,(string,len)

 CALL DISMOUNT,(par)

 DISMOUNT ’string’

 FORTRAN: CALL DISMNT(string,len)

 CALL DISMNT(par)

 Parameters:

 string is the location of a character string con- ______
 taining one or more pseudodevice names sepa-
 rated by blanks or commas.
 len is the location of a halfword (INTEGER*2) ___
 length of string. ______
 par is the location of a halfword (INTEGER*2) ___
 length of a character string immediately
 followed by that character string. The char-
 acter string contains one or more pseudo-
 device names separated by blanks or commas.

 Note: The DISMOUNT subroutine prints error messages on
 the logical I/O unit SERCOM or *MSINK* if SERCOM
 has not been assigned.

 The complete description for using the DISMOUNT
 macro is given in MTS Volume 14, 360/370 Assem- ______________
 blers in MTS. ____________

 Examples: Assembly: CALL DISMOUNT,(STR,LEN)
 .
 .
 LEN DC H’9’
 STR DC C’*T1* *T2*’

 DISMOUNT 155

 MTS 3: System Subroutine Descriptions

 April 1981

 DISMOUNT ’*T1* *T2*’

 FORTRAN: INTEGER*2 LEN
 ...
 LEN=9
 CALL DISMNT(’*T1* *T2*’,LEN)

 The above three examples release the pseudodevices named
 T1 and *T2*. The first assembly example uses the CALL
 macro and the second uses the DISMOUNT macro.

 156 DISMOUNT

 MTS 3: System Subroutine Descriptions

 April 1981

 DUMP, PDUMP ___________

 Subroutine Description

 Purpose: To print the values of specified memory regions in a
 FORTRAN program.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL DUMP(a1,b1,f1,...,an,bn,fn)

 CALL PDUMP(a1,b1,f1,...,an,bn,fn)

 Parameters:

 ai is a variable in the FORTRAN program specifying __
 one end of the "i"th region to be printed.
 bi is a variable in the FORTRAN program specifying __
 the other end of the "i"th region to be printed.
 fi indicates the format in which each data item __
 between ai and bi is to be printed. fi is a __ __ __
 fullword integer and may be one of the following
 values:

 0 - hexadecimal
 1 - LOGICAL*1
 2 - LOGICAL*4
 3 - INTEGER*2
 4 - INTEGER*4
 5 - REAL*4
 6 - REAL*8
 7 - COMPLEX*8
 8 - COMPLEX*16
 9 - literal

 Description: The DUMP and PDUMP subroutines print the values of the
 data items in the memory regions delimited by the ai and __
 bi parameters. As many triples of parameters, ai, bi, and __ __ __
 fi, may be given as desired. There is no order implied by __
 the ai and bi parameters--either may mark the beginning or __ __
 end of a region to be dumped. All output is printed on
 the logical I/O unit SERCOM.

 The relative locations of the variables in a FORTRAN
 program may be obtained from the map produced by the MAP
 option to the FORTRAN compiler.

 DUMP, PDUMP 157

 MTS 3: System Subroutine Descriptions

 April 1981

 The only difference between DUMP and PDUMP is that DUMP
 terminates execution of the calling program by calling the
 system subroutine SYSTEM while PDUMP returns to the
 calling program.

 Example: FORTRAN CALL DUMP(A(1),A(100),5,A(1),A(100),0)

 The above example prints the values of the first 100
 elements of the array A in both REAL*4 and hexadecimal
 format.

 158 DUMP, PDUMP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

| EBCASC ______
|
| Translate Table Description
|
|
|
| Purpose: To translate IBM EBCDIC characters into 8-bit ISO ASCII
| characters. An inverse table (ASCEBC) is also available.
|
| Location: Resident System
|
| Alt. Entries: IEBCASC, TREBCASC, TRIEA
|
| Calling Sequences:
|
| Assembly: L r,=V(EBCASC)
| TR d(l,b),0(r)
|
| Parameters:
|
| r is a general register that will contain the _
| address of the EBCASC translate table.
| d(l,b) is the location of the region to be trans- ______
| lated. d is the displacement, l is the _ _
| length of the region in bytes, and b is the _
| base register for the region. This parameter
| may be given also in an assembly language
| symbolic format.
|
| Description: The EBCDIC/ASCII translation table is shown on the next
| several pages. This table is for translating IBM Code
| Page 37 EBCDIC characters used in MTS into ISO 8859/1
| 8-bit ASCII characters. This table is also given in the
| file DOC:ALLCHARTABLE.
|
| See the ASCEBC subroutine description for a table to
| translate from ASCII into EBCDIC.
|
| Example: Assembly: L 6,=V(EBCASC)
| TR REG(100),0(6)
| .
| .
| REG DS CL100
|
| FORTRAN: LOGICAL*1 REG(100),TRTAB(256)
| COMMON /EBCASC/TRTAB
| ...
| CALL ITR(100,REG,0,TRTAB,0)
|
| The above examples will translate the EBCDIC characters of
| the 100-byte region at location REG into ASCII characters.

 EBCASC 159

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

| The FORTRAN example uses the ITR entry point (see the
| description of the Logical Operators subroutines in this
| volume). In addition, a RIP loader record (RIP EBCASC)
| must be inserted into the object file to force the loader
| to resolve the symbol EBCASC from the low-core symbol
| table.

 160 EBCASC

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 EBCASC 161

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 162 EBCASC

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 EBCASC 163

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 164 EBCASC

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 EBCASC 165

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 166 EBCASC

 MTS 3: System Subroutine Descriptions

 April 1981

 EDIT ____

 Subroutine Description

 Purpose: To call the MTS file editor from a user program.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL EDIT,(par1,par2,...,par16)

 FORTRAN: CALL EDIT(par1,par2,...,par16,&rc4,&rc8,&rc12)

 Parameters:

 par_1 is the fullword editor dsect address; it is _____
 zero on the first call.
 par_2 is a fullword integer ’-1’ or the CLS trans- _____
 fer vector.
 par_3 is a fullword integer ’-1’ or the intermedi- _____
 ate I/O routines transfer vector (see "Spe-
 cial Features" below).
 par_4 is the initial file name to edit. _____
 par_5 is the fullword length of initial file name. _____
 par_6 is the initial EDIT command. _____
 par_7 is the fullword length of the initial EDIT _____
 command.
 par_8 is the fullword minimum line number allowed. _____
 Should be -2147483648 (-2**31) if not re-
 stricted. All line numbers are "internal,"
 i.e., line 1.5 is represented as 1500.
 par_9 is the fullword maximum line number allowed. _____
 Should be 2147483647 (2**31-1) if not
 restricted.
 par_10 is the fullword line number relocation fac- ______
 tor; the editor will subtract this number
 from the real line number in the file when
 interpreting line number parameters and
 printing verification.
 par 11 is used to specify an external routine which ______
 examines all edit commands before the editor
 itself does. This routine may perform its
 own command scanning and provide additional
 services, return a modified command to the
 editor, instruct the editor to ignore the
 command, or signal an error condition. The
 editor may call this routine in either of two
 modes. The first mode is "scan only" which
 is used for syntax checking edit procedures,

 EDIT 167

 MTS 3: System Subroutine Descriptions

 April 1981

 etc. The second mode is "scan and execute"
 which intends for the editor to both parse
 and execute the command. The calling se-
 quence for the external routine is as
 follows:

 par 1 is the fullword address of the command _____
 to be examined.
 par 2 is the fullword-integer length of the _____
 command.
 par 3 is the fullword where the routine will _____
 place the address of the the command
 to be used by the editor.
 par 4 is the fullword-integer length of the _____
 command to be used by the editor.
 par 5 is a fullword integer indicating the _____
 mode:
 0 = scan only
 1 = scan and execute

 The return codes from the routine are:

 0 Editor should process command specified in
 par 3 and par 4. _____ _____
 4 Editor should ignore this command.
 8 Error detected by routine; command
 suppressed.

 par 11 in the call to EDIT should point to a ______
 V-type constant which either contains the
 address of the external routine to be used or
 an integer value of -1 (X’FFFFFFFF’); the -1
 means no external routine is to be used.
 par_12 is not used (must be fullword integer ’-1’ or ______
 zero parameter pointer).
 par_13 are editor control switches that are speci- ______
 fied as a fullword integer sum of the follow-
 ing. The actions of the following first 4
 switches are performed in the order listed.

 1 X’01’ set edit file using par_4 and _____
 par_5 _____
 2 X’02’ perform one-shot EDIT command,
 using par 6 and par 7, and re- _____ _____
 turn immediately. X’02’ and
 X’04’ are mutually exclusive; if
 both are specified, X’04’ is
 ignored.
 4 X’04’ read commands from SOURCE
 8 X’08’ unload editor unconditionally on
 return
 16 X’10’ prohibit EDIT command except for
 editing edit procedures

 168 EDIT

 MTS 3: System Subroutine Descriptions

 April 1981

 32 X’20’ prohibit MTS commands from the
 editor
 64 X’40’ prohibit copy from or to exter-
 nal files
 128 X’80’ return on any error
 256 X’100’ return on null length editor
 command
 512 X’200’ return on first ATTN
 1024 X’400’ do not unload editor on STOP
 command or EOF in command stream
 2048 X’800’ set initial current line number
 before any commands are pro-
 cessed on this call (par_15) ______
 4096 X’1000’ ignore initialization file spec-
 ified by $SET INITFILE(EDIT)
 command

 The following parameters and par_1 are set on return: _____

 par_14 is a 20-byte area to store current file name ______
 on return.
 par_15 is the fullword current line number. ______
 par_16 is a fullword to store the integer sum of the ______
 edit procedure switches on return:

 1 - EOF switch enabled
 2 - SUCCESS switch enabled
 4 - return from STOP command or EOF in com-
 mand stream
 par 17 (optional) is the address of the caller’s ______
 PSECT which is passed as an additional param-
 eter to the user’s command prescan routine.

 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return codes occur.

 Return codes:

 0 Normal return, editor unloaded.
 4 Normal return, editor not unloaded.
 8 Error return, editor not unloaded.
 12 Error return, editor system error.

 EDIT 169

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: This example is written in FORTRAN.

 INTEGER*4 EDWD/0/,FILENM(5),EDSW,LINE/3000/
 C
 C CALL THE EDITOR TO ALTER "C" TO "B" IN LINE 3.000 OF
 C FILE -TESTF
 C 2059 = 1+2+8+2048 WHICH ARE THE CONTROL SWITCHES FOR:
 C 1 SET EDIT FILE
 C 2 PERFORM INITIAL EDIT COMMAND
 C 8 UNLOAD EDITOR WHEN RETURNING
 C 2048 SET INITIAL CURRENT LINE POINTER
 CALL EDIT(EDWD,-1,-1,’-TESTF’,6,’ALTER * "C"B"’,13,
 X-99999999,99999999,0,-1,-1,2059,FILENM,LINE,
 XEDSW,&2,&9,&9)
 C
 C EDSW WILL BE ’2’ IF ALTER WAS SUCCESSFUL, ’0’ IF NOT.
 2 PRINT 5,FILENM,EDSW
 5 FORMAT(1X,5A4,I10)
 C
 STOP 0
 9 STOP 1
 END

 Special Features:

 The remainder of this subroutine description provides
 information on special features of the EDIT subroutine
 that are of interest to system programmers; knowledge of ____________
 these special features is not required to call EDIT in the __
 manner described above. ______________________

 Normal editing occurs when par_3 points to a fullword _____
 ’-1’. To use the special features described here, par_3 _____
 must point to an ordered vector of fullword subroutine
 addresses or zeros. Nonzero entries allows the user to
 provide alternate subroutines that replace those normally
 used by the editor. User-supplied routines allow the
 assembly language user to preprocess and postprocess file
 data. It is also possible to support user-implemented
 file organizations. This special facility is not intended
 for use from FORTRAN programs.

 A small amount of knowledge about the structure of the
 editor is required to properly use the alternate sub-
 routine interface. The accompanying diagram is a repre-
 sentation of the way the editor reads and writes files.

 Level 7 represents the program calling the editor. MTS
 uses the editor command language subsystem (CLS) interface
 while other programs generally use the more complete "user
 interface". The editor in turn calls upon a set of
 routines which perform buffering and checkpoint opera-
 tions. These then call a set of file-independent rou-

 170 EDIT

 MTS 3: System Subroutine Descriptions

 April 1981

 +------------------------------------+
 LEVEL 1 + MTS FILE ROUTINES - all file types |
 +-----------------+------------------+
 LEVEL 2 |
 +------------------------------+--------------------------------+
 | EDITOR I/O SUPPORT - set of routines for all file types |
 +------------------------------+--------------------------------+
 |
 +----------------------+-----------------------+
 LEVEL 3 | OPTIONAL USER-SUPPLIED INTERMEDIATE ROUTINES |
 +----------------------+-----------------------+
 LEVEL 4 |
 +------------------------------+-------------------------------+
 | EDITOR FILE MANAGEMENT buffering, checkpoint-restore-undo |
 +------------------------------+-------------------------------+
 |
 +---------------------+-----------------------+
 LEVEL 5 | EDITOR COMMAND LANGUAGE AND DATA PROCESSING |
 +------------------------------------+--------+
 |
 +----------------------+ +-----------+---------------+
 LEVEL 6 |"EDITOR" CLS INTERFACE<-->"EDIT" SUBROUTINE INTERFACE|
 +---------+------------+ +-----------+---------------+
 | |
 +----------+---------------+ +---------+-----------------+
 LEVEL 7 |"$EDIT" MTS COMMAND SYSTEM| | FTN,SPIRES, user programs |
 +--------------------------+ +---------------------------+

 EDIT 170.1

 MTS 3: System Subroutine Descriptions

 April 1981

 170.2 EDIT

 MTS 3: System Subroutine Descriptions

 April 1981

 tines. The file-independent routines of level 2 try to
 remove all irregularities in file access and also process
 all errors. For example, the READ INDEXED routine is
 given a line number and returns the line, length, and line
 number. A nonexistent line is represented by zero length.
 If an error occurs, a special error message routine is
 called by the file-independent routines. A message and
 severity level are included as parameters. The editor
 supplies the address of the routine to handle these
 errors. Attentions are handled in a similar manner.

 The editor supplies the location of a switch which either
 inhibits or allows attentions to be processed at that
 point. If attentions are disabled and one occurs, the
 routines are responsible for calling the attention-
 handling routine when attentions are again permitted.

 The user may supply his own version of the file-
 independent routines which in turn may or may not call the
 editor’s. This is useful for modifying lines before the
 editor sees them. For example, a FORTRAN preprocessing
 system may use this to concatenate continued statements
 and provide statement indentation for loops and if-then
 structures on input, while splitting and unediting them on
 output.

 File Independent Routine Descriptions:

 The file-independent routines all use a storage area
 similar to an MTS FDUB called the "IODSECT". The EDGET
 routine (see the description below) is called by the
 editor to get a file, allocate storage for the IODSECT,
 and initialize it. The address of the IODSECT is stored
 in the fullword specified by the first parameter to EDGET.
 All of the remaining I/O routines must receive this as
 their first parameter in the calling sequence. The EDREL
 routine (see the description below) releases the IODSECT
 and all other storage acquired for such processing. All
 of the remaining I/O routines return a return code greater
 than zero only if the first parameter is not a valid
 IODSECT. The routines will buffer up to one line in VM
 and will not reread it if successive calls request that
 same line. A write is always executed to insure that the
 most recent version has been received by the MTS file
 routines. The routine’s "current line" (not to be con-
 fused with * in the editor itself) is the last line
 accessed. The line number returned by the routines will
 always indicate the position in the file even if the line
 is not present (zero length). If the line number returned
 is 2147483647 (2**31-1), there is no current line or file
 position. Sequential files without line numbers, tape
 files, and other file types will have lines numbered
 starting with 1.000 and increments of 1.000. A call from

 EDIT 171

 MTS 3: System Subroutine Descriptions

 April 1981

 the editor to any of these routines may be replaced with a
 user-supplied routine which behaves the same way from the
 viewpoint of the editor. The third parameter to the EDIT
 subroutine is a vector of entry points to these replace-
 ment routines. The user-supplied routine may in turn call
 any of the I/O routines described below if so desired, as
 long as they return the proper information to the editor.

 EDGET - GET NEW FILE AND IODSECT ________________________________

 par_2 file name (if shorter than len (par_3), _____ _____
 delimit with blank).
 par_3 fullword length of name (maximum is 20 _____
 characters).
 par_4 fullword minimum accessible line number. _____
 Lines with numbers less than this will appear
 not to be in the file.
 par_5 fullword maximum accessible line number. _____
 Lines with numbers greater than this will
 appear not to be in the file.
 par_6 fullword relocation factor to the line num- _____
 ber. The offset is subtracted from line
 numbers on input and added on output. Thus

 172 EDIT

 MTS 3: System Subroutine Descriptions

 April 1981

 an offset of 1000000 will make line 1000.000
 look like line zero.
 par_7 1-byte pad character if required by I/O _____
 routines.
 par_8 error message routine. Calling sequence de- _____
 scribed elsewhere.
 par_9 attention routine entry point (has no calling _____
 parameters). Described below in the section
 "Attention Processing."
 par_10 1-byte attention bit described below. ______
 par_11 1-byte attention hold count described below. ______
 par_12 CLS transfer vector. ______
 par_13 virtual memory file chain header (supplied by ______
 editor). The editor I/O routines use this to
 locate edit procedures.

 Returns:

 par_1 fullword address of IODSECT. _____
 par_14 CL20 actual file name. ______
 par_15 FDUB for file. ______
 par_16 fullword file type code. ______

 0 user-supported file type (no editor
 support)
 4 file type is "NONE"
 8 editor "edit procedure"
 12 MTS line file
 16 MTS sequential file
 20 tape file
 24 "other" file type

 par_17 fullword maximum input-output length. ______
 par_18 fullword current maximum input length. Mini- ______
 mum will always be 255.

 EDSET - SET MIN MAX OFFSET LINE NUMBERS AND PAD CHARACTERS __

 par_1 IODSECT. _____
 par_2 minimum accessible line number. _____
 par_3 maximum accessible line number. _____
 par_4 offset to line number (user sees this added _____
 to real number).
 par_5 returns current maximum input-output length. _____
 par_6 returns current maximum input length. _____
 par_7 pad character if required by I/O routines. _____

 EDREL - RELEASE FILE AND IODSECT ________________________________

 par_1 IODSECT. _____

 EDIT 173

 MTS 3: System Subroutine Descriptions

 April 1981

 EDCLO - CLOSE FILE AND INVALIDATE CURRENT BUFFER __

 Used when user requests the closing of the file.

 par_1 IODSECT. _____

 EDENT - ENTER ROUTINES AFTER EXIT FROM EDITOR ___

 Used when editor restarts after possible external
 operations on the file being edited.

 par_1 IODSECT. _____

 EDRIX - READ INDEXED ROUTINE ____________________________

 par_1 IODSECT. _____
 par_2 fullword line number to be used as index for _____
 read. -2147483648 and 2147483647 mean *F and
 *L, respectively.

 Returns:

 par_3 fullword length of record read. Zero means _____
 that record was not found but line number was
 made the current file position.
 par_4 fullword line number. _____
 par_5 fullword location of the record. The caller _____
 must not modify this region.

 EDRSQ - READ SEQUENTIAL ROUTINE _______________________________

 par_1 IODSECT. _____
 par_2 fullword number of records to read forward or _____
 backward from current. Zero means stay at
 current record. 1 means read next record and
 -1 means read previous record; 2 means read
 the second record after the current, and -2
 means the second previous record before the
 current record, etc.

 Returns:

 par_3 fullword line length. Zero means no record _____
 (EOF or empty file).
 par_4 fullword line number. _____
 par_5 fullword address of record read. _____

 174 EDIT

 MTS 3: System Subroutine Descriptions

 April 1981

 EDWIX - WRITE INDEXED _____________________

 par_1 IODSECT. _____
 par_2 fullword new length. _____
 par_3 fullword line number. *F or *L not allowed _____
 here.
 par_4 new line data EDWIX makes it active line _____
 also.

 EDSPA - FIND AVAILABLE LINE NUMBER SPACE AFTER CURRENT __
 RECORD ______

 par_1 IODSECT. _____

 Returns:

 par_2 fullword number of lines that can actually be _____
 inserted.
 par_3 fullword line number of first line that may _____
 be inserted.
 par_4 fullword minimum allowed increment. _____
 par_5 fullword last unused line number in region. _____

 EDRNM - RENUMBER OPERATION __________________________

 par_1 IODSECT. _____
 par_2 fullword first line number. _____
 par_3 fullword last line number. _____
 par_4 fullword begin line number. _____
 par_5 fullword increment to line number. _____

 EDCNT - COUNT NUMBER OF LINES BETWEEN TWO LINES ___

 par_1 IODSECT. _____
 par_2 fullword first line number. _____
 par_3 fullword last line number. _____
 par_4 returns fullword number of lines (inclusive). _____

 EDGLN - GET VECTOR OF LINE NUMBERS __________________________________

 par_1 IODSECT. _____
 par_2-5 same as par_2-5 of RETLNR subroutine. _______ _______

 EDPLN - PUT VECTOR OF LINE NUMBERS __________________________________

 par_1 IODSECT. _____
 par_2-5 same as par_2-5 of SETLNR subroutine. _______ _______

 EDIT 175

 MTS 3: System Subroutine Descriptions

 April 1981

 EDUNLK - UNLOCK FILE ____________________

 Unlock the edit file.

 par 1 IODSECT. _____

 EDWRBF - WRITE CHANGED FILE BUFFERS ___________________________________

 Used when editor temporarily returns to caller and
 the file could be modified thereby invalidating the
 current line.

 par 1 IODSECT. _____

 ERROR MESSAGE ROUTINE - supplied by editor __

 par_1 the message. _____
 par_2 fullword message length. _____
 par_3 fullword message severity: _____

 0 Comment, return after printing
 1 Warning, return after printing
 2 Error, do not return
 3 Severe error in editor, do not return

 par_4 fullword message number. _____

 Attention Processing:

 Attention hold count is a one-byte count. If a routine
 enters a sensitive area of code, i.e., one that must not
 be interrupted, this count is incremented by one. A
 nonzero count tells the attention trap exit routine to set
 the attention bit byte to X’00’ to indicate that an
 attention has occurred and to return to the point of
 attention. When the sensitive region of code is left, the
 attention hold count must be decremented by one. If the
 count goes to zero at that point, the attention bit must
 be examined for X’00’ with the test and set instruction
 (which resets it to X’FF’). If it is zero the attention
 routine must be called to process the attention in the
 normal manner. This allows all levels of routines inde-
 pendent attention control in sensitive areas. The error
 routine resets attention hold count and attention bit on
 errors with severity greater than "warning". The user
 must be certain to reset attention hold count when leaving
 the sensitive area so as to enable interrupts.

 I/O Routines Transfer Vector:

 par_3 to the editor interface may point to a fullword _____
 ’-1’, which means there is no special transfer vector and
 the normal editor routines are used. Otherwise par_3 _____

 176 EDIT

 MTS 3: System Subroutine Descriptions

 April 1981

 points to an ordered vector of fullword routine addresses
 or zeros. A zero in any position means that the normal
 editor I/O routine is to be used, otherwise the address is
 used instead of the normal routine. The vector order is
 defined to be:

 0 ’14’ - fullword integer number of entries in
 vector
 1 EDGET - get new file and IODSECT
 2 EDREL - release file and IODSECT
 3 EDCLO - close file and invalidate current buffer
 4 EDRIX - read indexed routine
 5 EDRSQ - read sequential routine
 6 EDWIX - write indexed
 7 EDSPA - find available line number space after
 current record
 8 EDRNM - renumber operation
 9 EDCNT - count number of lines between two lines
 10 EDGLN - get vector of line numbers
 11 EDPLN - put vector of line numbers
 12 EDSET - set minimum and maximum offset line num-
 bers and pad character
 13 EDUNLK - unlock edit file
 14 EDWRBF - write all changed buffers of edit file

 The above routines are available in the resident system
 through LCSYMBOL.

 EDIT 177

 MTS 3: System Subroutine Descriptions

 April 1981

 178 EDIT

 MTS 3: System Subroutine Descriptions

 April 1981

 EMPTY _____

 Subroutine Description

 Purpose: To empty a file without destroying it.

 Location: Resident System

 Calling Sequence:

 Assembly: (a) L 0,fdub
 CALL EMPTY

 (b) LM 0,1,lname
 CALL EMPTY

 Parameters:

 (a) GR0 contains an FDUB-pointer (such as returned
 by GETFD) or an integer logical I/O unit number
 (0 through 99), or

 (b) GR0 and GR1 contain a left-justified,
 8-character logical I/O unit name (e.g.,
 SCARDS).

 Return Codes:

 0 Successful return.
 4 The file does not exist.
 8 Hardware error or software inconsistency
 encountered.
 12 Empty access not allowed.
 16 Locking the file for modification will result in a
 deadlock.
 20 Automatic wait for shared file was interrupted.

 Notes: FORTRAN programs should call the EMPTYF
 subroutine.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from EMPTY with a return code of 20.

 When a file is emptied, the entire contents of the ______
 file are discarded. The EMPTY subroutine cannot
 be used to empty only a portion of a file.

 EMPTY 179

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: Assembly: LA 1,FNAME
 CALL GETFD
 ST 0,FDUB
 CALL EMPTY
 .
 .
 FNAME DC C’DATAFILE ’
 FDUB DS F

 This example will empty the file DATAFILE.

 180 EMPTY

 MTS 3: System Subroutine Descriptions

 April 1981

 EMPTYF ______

 Subroutine Description

 Purpose: To empty a file without destroying it.

 Location: Resident System

 Alt. Entry: EMPTYS

 Calling Sequences:

 Assembly: CALL EMPTYF,(unit)

 FORTRAN: CALL EMPTYF(unit,&rc4,&rc8,&rc12,&rc16,&rc20)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 rc4,...,rc20 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 File was emptied successfully.
 4 The file does not exist.
 8 Hardware error or software inconsistency
 encountered.
 12 Empty access not allowed.
 16 Locking the file for modification will result in a
 deadlock.
 20 Automatic wait for shared file was interrupted.

 Notes: EMPTYF (and EMPTY) handles MTS logical I/O units
 rather than FORTRAN I/O units. EMPTYF cannot
 handle I/O unit numbers greater than 19. If the
 EQUATE FTNCMD command has been used, MTS units 0
 to 19 may not correspond to FORTRAN units 0 to 19.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of

 EMPTYF 181

 MTS 3: System Subroutine Descriptions

 April 1981

 interruption from the attention exit, a return is
 made from EMPTYF with a return code of 20.

 When a file is emptied, the entire contents of the ______
 file are discarded. The EMPTYF subroutine cannot
 be used to empty only a portion of a file.

 Examples: Assembly: CALL EMPTYF,(UNIT)
 .
 .
 UNIT DC CL8’SCARDS’

 FORTRAN: CALL EMPTYF(’SCARDS ’)

 These examples will empty the file attached to SCARDS.

 182 EMPTYF

 MTS 3: System Subroutine Descriptions

 April 1981

 ERROR _____

 Subroutine Description

 Purpose: To suspend execution with an error indication.

 Location: Resident System

 Alt. Entry: ERROR#

 Calling Sequence:

 Assembly: CALL ERROR

 or

 ERROR

 FORTRAN: CALL ERROR

 Note: The complete description for using the ERROR macro
 is given in MTS Volume 14, 360/370 Assemblers in _______________________
 MTS. ___

 Description: A call to this subroutine returns control to MTS or to the
 previous command language subsystem. If the return is
 made to MTS command mode, the comment "ERROR RETURN" is
 printed. In batch mode, a dump is automatically given if
 $SET ERRORDUMP=ON was specified.

 The program is not unloaded. The contents of registers
 and program storage may be inspected to determine the
 cause of the error. The execution return code is set to
 8. This may be tested by the $IF command, e.g.,

 $IF RUNRC=8, mts-command

 The execution return code is displayed under the control
 of the $SET RCPRINT option (see MTS Volume 1, The Michigan ____________
 Terminal System) and the GUINFO item LASTEXRC (239). _______________

 Execution of the suspended program may be restarted from
 the point of suspension by the $RESTART command or the
 CONTINUE debug command in debug mode.

 This subroutine is intended to be used in situations in
 which the program can detect an internal error in its
 program logic or execution, e.g., illegal data, unexpected
 results, etc.

 ERROR 183

 MTS 3: System Subroutine Descriptions

 April 1981

 184 ERROR

 MTS 3: System Subroutine Descriptions

 April 1981

 FILEINFO ________

 Subroutine Description

 Purpose: To return information about a file.

 Location: Resident system.

 Calling Sequences:

 Assembly: CALL FILEINFO,(what,type,item1,loc1,...,
 itemn,locn),VL

 FORTRAN: CALL FILEINFO(what,type,item1,loc1,...,
 itemn,locn,&rc4,...,&rc28)

 Parameters:

 what is either: ____
 (a) a file name (in either of two formats),
 (b) a fullword FDUB pointer, an eight charac-
 ter I/O unit name, or a fullword logical
 I/O unit number, or
 (c) a CATSCAN workarea pointer.
 type if a fullword enumerated type describing ____
 what: ____
 1 - a file name formatted as a halfword
 length followed by the file name (trail-
 ing blanks are not allowed).
 2 - a file name formatted as the file name
 with one or more trailing blanks.
 3 - a fullword FDUB pointer, an eight char-
 acter logical I/O unit name, or a full-
 word logical I/O unit number.
 4 - a workarea pointer returned by the CATS-
 CAN subroutine.
 itemn is an 8-character item name (padded with _____
 blanks). The item names may be in uppercase
 only.
 locn is an area to return the information associ- ____
 ated with itemn. The format of this area _____
 depends on the item requested. The legal
 items and the format of the returned informa-
 tion is given in the table below. The item ____
 and loc parameters are always specified in ___
 pairs.
 &rc4,...,&rc28 (optional) are statement labels to
 transfer to if a nonzero return code occurs.

 FILEINFO 184.1

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:
 0 Successful return.
 4 Caller parameter error.
 8 Insufficient access for the requested information.
 12 No access to the file.
 16 File does not exist.
 20 File-wait deadlock.
 24 File-wait interrupt.
 28 Hardware/software inconsistency.

 Description: If FILEINFO is called with more than one parameter, the
 return code will be zero if and only if all of the
 parameters are successfully processed. If an access error
 (return code 4) or a parameter error (return code 8)
 occurs for one of the items in a multi-item call, then all ___
 of the return value locations will have unpredictable
 values. Also, a parameter or access error may mask other
 parameter or access errors.

 The information return by FILEINFO is described in the
 table below.

 FILEINFO is the preferred subroutine to use to return
 information about a file. FILEINFO can be used in
 conjunction with the CATSCAN subroutine to obtain informa-
 tion about a group of files.

 184.2 FILEINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 Name Format Description ____ ______ ___________

 CINAME Variable File name, formatted as follows:

 The first fullword denotes the number of bytes
 (including this fullword) supplied by the user for
 this field. The second fullword is reserved for
 FILEINFO, and will denote the number of bytes
 (including this and the preceding fullwords) nec-
 essary for the file name (this value may be
 greater than the number of bytes supplied). This
 is followed by the actual file name.

 CIONID 4 bytes CCID of owner (EBCDIC characters)
 CIVOL 8 bytes Volume name (EBCDIC characters)
 CIUC Fullword Use count for file
 CIFO Fullword File organization:
 0=line, 1=sequential, 2=SEQWL
 CIDT Fullword Device type:
 0=2311, 1=2314, 2=2321, 3=3330, 4=3350
 CIFLG Fullword Flags:
 1 - Priv
 2 - Nosave
 CIPKEY 16 bytes PKEY for file
 CILCCT STCK Last change time for contents of file
 CILNCCT STCK Last change time for non-contents
 CICT STCK Creation time
 CILRT STCK Last reference time
 FIFLAG Fullword 1=backwards reads possible;
 2=empty file
 FIEMPTY Fullword EMPTY flag: 0=not empty, 1=empty
 FICNS Fullword Current size in pages
 FITS Fullword Truncated size in pages
 FICPS Fullword Copies (or duplicated) size in pages
 +FIFLN Fullword First line number (0 if empty)
 +FILLN Fullword Last line number (0 if empty)
 FIMLL Fullword Maximum line length
 FIMXS Fullword Maximum expandable size (pages)
 *+FINL Fullword Number of lines
 *+FINH Fullword Number of chunks available
 *+FILCNT Fullword Total bytes - lines
 *+FIHCNT Fullword Total bytes - holes
 *+FIMHL Fullword Maximum length available space
 FIXF Fullword Expansion factor as follows:
 >0 - Absolute expansion in pages
 0 - Default used (currently 10%)
 <0 - Percent to expand
 SIACC Fullword Access for this CCID/proj.-number/pkey expressed
 as a sum of the value for each access type
 allowed:
 1 - read access allowed
 2 - write extend access allowed
 4 - write change/empty access allowed

 FILEINFO 184.3

 MTS 3: System Subroutine Descriptions

 April 1981

 8 - renumber/truncate access allowed
 16 - destroy/rename access allowed
 32 - permit access allowed
 SIGA Fullword Global (OTHERS) access as above
 SIOA Fullword Owner access as above
 SIVAR Variable String of specific sharing information formated as
 a varying field.

 The first fullword denotes the number of bytes
 (including this fullword) supplied by the user for
 sharing "nodes".

 The second fullword is reserved for FILEINFO, and
 will denote the number of bytes (including this
 and the preceding fullwords) necessary for sharing
 "nodes".

 A value of zero means that no sharing information
 is present. This value may be greater than the
 actual number of bytes supplied.

 Each sharing "node" is formatted as:
 fullword - length of this "node"
 fullword - access for this entity
 fullword - type flag as follows:
 0 - project number
 1 - CCID
 2 - pkey
 3 - project number and pkey
 4 - CCID and pkey

 if project number present:
 fullword - project number length
 4 chars - project number

 if CCID present:
 fullword - CCID present
 4 chars - CCID

 if pkey present
 fullword - pkey length
 varying - pkey

 If a pkey is qualifying a CCID or project number, the pkey length and
 the pkey will be contained within the same sharing "node", where

 + - indicates information available only for LINE files
 * - indicates expensive information

 The format STCK indicates a doubleword time value in the same format as
 that returned by the STCK machine instruction.

 184.4 FILEINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 FNAMETRT ________

 Translate Table Description

 Purpose: A 256-byte translate table to check the legality of a file
 name.

 Location: Resident System

 Alt. Entry: FNTRT

 Calling Sequence:

 Assembly: SR 2,2
 L r,=V(FNAMETRT)
 TRT name,0(r)

 Parameters:

 r is a general register containing the address of _
 the FNAMETRT translate table.
 name is the location of the file name to be tested. ____

 Values Returned:

 GR2 will contain a value indicating the result of
 the test:

 0 - legal file name without a legal
 terminator.
 1 - legal file name with legal terminator.
 2 - name contains a character that is ille-
 gal for the CREATE or RENAME subroutine
 (the remainder of the name may or may
 not be illegal).
 3 - illegal file name.

 The condition code is set to zero if the result
 is a legal file name without a legal terminator;
 otherwise, it is set to 1 or 2.

 A file name may contain the letters A-Z (upper-
 or lowercase), the digits 0-9, and the following
 special characters:

 < > $ * - % # / . _ !

 The following characters terminate a file name:

 FNAMETRT 185

 MTS 3: System Subroutine Descriptions

 April 1981

 blank (+ , @ X’FF’

 If the file belongs to another signon ID, it
 must be specified without using the shared file
 separator character, e.g., 2AGADATAFILE speci-
 fies the file DATAFILE belonging to signon ID
 2AGA.

 Example: Assembly: SR 2,2
 L 3,=V(FNAMETRT)
 TRT FNAME,0(3)
 BZ EXIT No legal terminator
 C 2,=F’1’
 BH ERROR Illegal file name
 .
 .
 FNAME DS CL16 File name

 FORTRAN: LOGICAL*1 FNAME(16),TRTAB(256)
 COMMON /FNTRT/TRTAB
 ...
 I = ITRT(16,FNAME,0,TRTAB,0,N,L)
 IF (I.EQ.0) GO TO 10
 IF (L.GT.1) GO TO 20
 C File is OK.
 ...
 10 No legal terminator
 ...
 20 Illegal character

 The above examples test for the legality of the file name
 contained in FNAME.

 The FORTRAN example uses the ITRT subroutine (see the
 description of the Logical Operators subroutines in this
 volume). In addition, a RIP loader record (RIP FNTRT)
 must be inserted into the FORTRAN object file to force the
 loader to resolve the symbol FNTRT from the low-core
 symbol table.

 186 FNAMETRT

 MTS 3: System Subroutine Descriptions

 April 1981

 FREAD/FWRITE ____________

 Subroutine Description

 Purpose: To provide a free format input/output facility, especially
 for FORTRAN programs.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL FREAD(unit,string,list,...,&rc4,&rc8,&rc12)

 CALL FWRITE(unit,string,list,...)

 Assembly: CALL FREAD,(unit,string,list,...),VL

 CALL FWRITE,(unit,string,list,...),VL

 Parameters:

 unit is the location of one of the following: ____
 (a) a FDUB-pointer,
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a character-string logical I/O unit name
 such as ’SCARDS’ or ’SPRINT’, or the
 character string ’PAR’ or ’*’.
 This parameter indicates where input is to be
 read from or the output is to be written to.
 string is the location of a string of characters (a ______
 literal or an array of characters) indicating
 how many and what types of variables are to
 be read or written. A type string consists
 of a sequence of type codes separated by
 commas. For FWRITE, this string is written
 without conversion except for the type codes
 which are enclosed in angle brackets (<,>).
 list is a list of variable or array names, sepa- ____
 rated by commas, into which the data values
 are to be read or from which the data values
 are to be written. In the case of an array,
 the entry is a pair - the first member is the
 array name and the second member is the
 location of the number of elements to be read
 into the array.
 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 FREAD/FWRITE 187

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The FREAD subroutine reads a specified amount of data in
 free format in response to each call. The data items to
 be read may appear in free format in the input records,
 i.e., in any position in the record, separated by blanks,
 commas, or other delimiters selected by the user. The
 amount of data to be read is indicated by the list of
 variables in the list parameter. The type of data item to ____
 be read into each variable location is determined by the
 type codes in the string parameter. There is a one-to-one ______
 correspondence between type codes and variable names in
 the list parameter. ____

 The FWRITE subroutine writes onto a specified unit with
 the string parameter which must terminate with one of the ______
 following characters:

 ; implies that the output line is incomplete (the
 next call to FWRITE can add output to the same
 line).
 : implies that the output line is complete and
 should be written out.

 Type codes are enclosed within angle brackets (<,>) and
 specify the type of conversion to be performed. There is
 a one-to-one correspondence between type codes and varia-
 ble names in the list parameter. ____

 FREAD and FWRITE have the special entry points FREADB,
 FREADC, FWRITB, and FWRITC. FREADB and FWRITB are used to
 read from or write to a user-specified buffer. FREADC and
 FWRITC are used to set or reset various switches that
 control subsequent FREAD and FWRITE actions.

 For further information on the FREAD and FWRITE subrou-
 tines, see the section "FREAD/FWRITE: Free Format I/O
 Subroutines" in MTS Volume 6, FORTRAN in MTS. ______________

 Examples: FORTRAN: CALL FREAD(’SCARDS’,’I:’,J)

 The above example reads an integer from SCARDS and places
 its value into the variable J.

 CALL FWRITE(9,’<I><I>:’,I,J)

 The above example writes two integers onto logical I/O
 unit 9 from the variables I and J.

 CALL FREAD(5,’R VECTOR:’,VEC,13)

 The above example reads 13 real numbers from logical I/O
 unit 5 into the array VEC.

 188 FREAD/FWRITE

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 FREEFD ______

 Subroutine Description

 Purpose: To release a file or device acquired by the GETFD
 subroutine.

 Location: Resident System

| Alt. Entries: FREEFDS, FREFDS

 Calling Sequences:

 Assembly: L 0,fdub
 CALL FREEFD

| CALL FREEFDS,(fdub),VL
|
| FORTRAN: CALL FREFDS(fdub,&rc4)

 Parameters:

| fdub (GR0) is a FDUB-pointer (such as returned by ____
| CHKFDUB, GDINFO, or GETFD).
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.

 Return Codes:

| 0 Successful return.
| 4 Invalid FDUB-pointer or no VL bit specified.
|
| Description: A call on the FREEFDS or FREFDS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the FREEFD subroutine.

 Examples: Assembly: L 0,FDUB
 CALL FREEFD

| FORTRAN: CALL FREFDS(FDUB,&4)

 The above examples free the file or device associated with
 the FDUB-pointer in FDUB.

 FREEFD 189

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 190 FREEFD

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 FREESPAC ________

 Subroutine Description

 Purpose: To release storage acquired by the GETSPACE subroutine.

 Location: Resident System

| Alt. Entries: FREESP, FREESPAS, FRESPS

 Calling Sequences:

 Assembly: L 0,len
 L 1,loc
 CALL FREESPAC

 or

 FREESPAC loc[,LNG=len][,EXIT=err]

| CALL FREESPAS,(len,loc),VL
|
| FORTRAN: CALL FRESPS(len,loc,&rc4,&rc8)

 Parameters:

| len (GR0) is either zero or the length of the block ___
| to return. If zero, the region (beginning from
| the address contained in GR1 and extending
 through to the end of the region originally
 acquired by GETSPACE) is to be released. If not
 zero, GR0 is the length of the region to be
 released. If it is not a multiple of 8, the
 next smallest multiple of 8 is used.
| loc (GR1) is the location of the first byte of the ___
 region to be released. If it is a not a
 multiple of 8, the next larger multiple of 8
 will be used.
| &rc4,&rc8 (optional) are statement labels to transfer _________
| to if a nonzero return code occurs.

 A GR13 save area is not required for a call to this
 subroutine.

 Return Codes:

 0 Successful return.
 4 Error return. Either the region was not initially
 allocated by GETSPACE and cannot be released (the
 region either does not exist or is a part of the

 FREESPAC 191

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

| resident system), or the region specified (loc to ___
| loc to loc+len-1) is not completely within a ___ ___ ___
| region originally allocated by GETSPACE.
| 8 VL bit not specified.
|
| Notes: The Array Management Subroutines described in this
| volume also may be used to allocate and release
 storage.

 The complete description for using the FREESPAC
 macro is given in MTS Volume 14, 360/370 Assem- ______________
 blers in MTS. ____________

| Description: A call on the FREESPAS or FRESPS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the FREESPAC subroutine.

 Examples: Assembly: SR 0,0
 L 1,LOC
 CALL FREESPAC

 FREESPAC LOC

| FORTRAN: CALL FRESPS(0,LOC,&4)

 The above three examples call FREESPAC to release the
 entire region whose starting address is contained in the
 location LOC. The first uses the CALL macro and the
 second uses the FREESPAC macro.

 L 0,LEN
 L 1,LOC
 CALL FREESPAC
 .
 .
 LEN DC F’32’

 FREESPAC LOC,LNG=32

 The above two examples call FREESPAC to release the first
 32 bytes of the region whose starting address is contained
 in the location LOC.

 192 FREESPAC

 MTS 3: System Subroutine Descriptions

 April 1981

 FSIZE _____

 Subroutine Description

 Purpose: To determine the file size required to contain a certain
 amount of information without actually writing the file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL FSIZE,(type,length,size)

 FORTRAN: CALL FSIZE(type,length,size,&rc4)

 Parameters:

 type is the location of a fullword integer con- ____
 taining the file type:
 0 - line file
 1 - sequential file
 2 - sequential-with-line-numbers file
 length is the location of a fullword integer con- ______
 taining the length of the current line which
 would be written into the file.
 size is the location of a 16-word integer array ____
 (64 bytes). The first word is zero on the
 first call, and contains the current size in
 pages on subsequent calls (returned on each
 call). The second word is the "last pointer"
 as it would be returned by the NOTE sub-
 routine for sequential or sequential-with-
 line-numbers files. The remainder of size is ____
 used by FSIZE for internal storage between
 calls and should not be altered.
 rc4 is the statement label to transfer to if the ___
 equivalent return code occurs.

 Return Codes:

 0 Successful return (information returned normally).
 4 Invalid parameter.

 Description: The FSIZE subroutine is used to determine the minimum file
 size required to contain a specific set of data lines
 without actually writing them into a file. The subroutine
 must be called once for each line which would be written
 into the file. Before the first call, the first word of
 size should be set to zero; on subsequent calls, only the ____
 length parameter should be changed. The first word of ______

 FSIZE 193

 MTS 3: System Subroutine Descriptions

 April 1981

 size will contain the minimum file size required to ____
 contain the accumulated number of lines following each
 call.

 Examples: Assembly: LA 2,100
 LOOP CALL FSIZE,(TYPE,LEN,SIZE)
 BCT 2,LOOP
 .
 .
 TYPE DC F’0’
 LEN DC F’50’
 SIZE DC 16F’0’

 FORTRAN: INTEGER SIZE(16)
 ...
 SIZE(1) = 0
 DO 100 I=1,100
 100 CALL FSIZE(0,50,SIZE)

 These examples compute the minimum size required for a
 line file containing 100 50-byte lines. This value will
 be contained in SIZE(1).

 194 FSIZE

 MTS 3: System Subroutine Descriptions

 April 1981

 FSRF, BSRF __________

 Subroutine Description

 Purpose: To forward space or backspace records (lines) in a line
 file or sequential file.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL FSRF,(unit,skipct)

 CALL BSRF,(unit,skipct)

 FORTRAN: CALL FSRF(unit,skipct,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24)

 CALL BSRF(unit,skipct,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 skipct is the location of a fullword-integer count ______
 of the number of logical records (lines) to
 forward or backspace over.
 rc4,...,rc24 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Records skipped successfully.
 4 End-of-file encountered.
 8 Illegal unit parameter, or hardware error or ____
 software inconsistency encountered.
 12 Read or write access not allowed.
 16 Locking the file for read will result in a
 deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent
 usage of the shared file).
 24 The file does not exist.

 FSRF, BSRF 195

 MTS 3: System Subroutine Descriptions

 April 1981

 Notes: For both line and sequential files, a current
 (line or read) pointer is maintained. Forward
 spacing or backspacing begins from the current
 pointer. See Appendix B of the section "Files and
 Devices" in MTS Volume 1, The Michigan Terminal _______________________
 System, for details concerning how this current ______
 pointer is updated as a result of various I/O
 operations.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from FSRF or BSRF with a return code of 20.

 Examples: Assembly: CALL FSRF,(UNIT,SKIPCT)
 .
 .
 UNIT DC F’1’
 SKIPCT DC F’2’

 The above example will forward space two logical records
 (lines) on the file attached to logical I/O unit 1.

 FORTRAN: INTEGER*4 UNIT
 DATA UNIT/1/
 ...
 CALL BSRF(UNIT,2)

 The above example will backspace two logical records
 (lines) on the file attached to logical I/O unit 1.

 196 FSRF, BSRF

 MTS 3: System Subroutine Descriptions

 April 1981

 FTNCMD ______

 Subroutine Description

 Purpose: To allow a program to issue commands to the FORTRAN I/O
 library.

 Location: Resident System

 Calling Sequence:

 FORTRAN: CALL FTNCMD(string,length)

 Parameters:

 string is the location of a character string that ______
 consists of the FORTRAN I/O library command.
 length is the location of a fullword or halfword ______
 (INTEGER*4 or INTEGER*2) giving the length of
 string. This may be set to zero if a ______
 semicolon is used to terminate the character
 string.

 Description: The FTNCMD subroutine allows a program to issue commands
 to the FORTRAN I/O library monitor in order to manipulate
 the I/O environment. Any command that is legal for the
 FORTRAN I/O library monitor may be given. In addition, an
 MTS command may be specified by prefixing the command with
 a dollar sign ($). The subroutine returns to the calling
 program unless an erroneous FORTRAN monitor command is
 specified, in which case the FORTRAN I/O monitor assumes
 control.

 The FORTRAN I/O library and monitor are described in the
 section "FORTRAN I/O Library" in MTS Volume 6, FORTRAN in ___________
 MTS. ___

 Examples: CALL FTNCMD(’ASSIGN 7=*PUNCH*’,16)

 The above example assigns logical I/O unit 7 to *PUNCH*.

 CALL FTNCMD(’SET UVCHECK=OFF;’,0)

 The above example suppresses the FORTRAN I/O library
 checking for undefined variables.

 FTNCMD 197

 MTS 3: System Subroutine Descriptions

 April 1981

 198 FTNCMD

 MTS 3: System Subroutine Descriptions

 April 1981

 GDINF _____

 Subroutine Description

 Purpose: To allow a FORTRAN program to obtain information returned
 from the subroutine GDINFO.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: CALL GDINF(unit,region,&rc4)

 Parameters:

 unit is the location of either ____
 (a) a FDUB-pointer (as returned by GETFD),
 (b) an 8-character logical I/O unit name
 left-justified with trailing blanks
 (e.g., SCARDS, SPRINT, 0 through 99,
 etc.), or
 (c) an integer logical I/O unit number
 (0-99).
 region is a 44-byte array (11 fullwords) in which ______
 the information is returned.
 rc4 (optional) is the statement label to transfer ___
 to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
 4 Error. See the GDINFO subroutine description for
 the possible error conditions.
 8 Hardware or software inconsistency.

 Description: This subroutine calls the GDINFO subroutine and places the
 returned information in region which is provided by the ______
 FORTRAN calling program. See the description of the
 GDINFO subroutine in this volume for a description of this
 information. Note that only the first eleven words of
 GDINFO information is returned.

 Example: FORTRAN: INTEGER*4 REG(11)
 ...
 CALL GDINF(’SPUNCH ’,REG,&99)
 ...
 99 WRITE(6,199)
 199 FORMAT(’ SPUNCH IS NOT ASSIGNED’)

 GDINF 199

 MTS 3: System Subroutine Descriptions

 April 1981

 This example calls GDINF to obtain information about the
 file or device attached to SPUNCH.

 200 GDINF

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GDINFO ______

 Subroutine Description

 Purpose: To obtain information about a file or device.

 Location: Resident System

| Alt. Entries: GDINFOS, GDINFS

 Calling Sequence:

| Assembly: L 0,fdub
| CALL GDINFO
|
| LM 0,1,name
| CALL GDINFO
|
| CALL GDINFOS,(unit,info),VL
|
| FORTRAN: CALL GDINFS(unit,info,&rc4,&rc8)

 Parameters:

| fdub (GR0) is a FDUB-pointer (such as returned by ____
 GETFD) or an integer logical I/O unit number
 (0 through 99), or
| name (GR0 and GR1) is a left-justified, ____
 8-character logical I/O unit name (e.g.,
 SCARDS).
| unit is the location of either ____
| (a) a fullword-integer FDUB-pointer (as re-
| turned by GETFD),
| (b) a left-justified, 8-character logical I/O
| unit name (e.g., CL8’SPRINT’),
| (c) a fullword-integer logical I/O unit num-
| ber between 0 and 99, inclusive.
| info is a pointer to a GETSPACE-allocated block of ____
| storage to contain the information about the
| specified unit.
| &rc4,&rc8 (optional) are statement labels to transfer _________
| to if a nonzero return code occurs.

 Return Codes:

| 0 Successful return. GR1 or info holds the informa- ____
| tion requested (see below).
| 4 Error return. Illegal FDUB-pointer, illegal name,
| no file or device attached to specified I/O unit
| name or number, or no VL bit set.
 8 Hardware error or software inconsistency.

 GDINFO 201

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 Values Returned:

 If the return code from GDINFO is zero, then GR1
 contains the location of a fullword-aligned region of
 information. (If a concatenation was specified in
 the original logical I/O unit setup or GETFD call,
 the information returned in this region applies to
 the currently active member of the concatenation.)
 The region contains:

 WORD 1: FDUB-pointer (in general, the FDUB-pointer
 returned here should not be used by programs;
 instead, the logical I/O unit name or number
 or the FDUB-pointer used to call GDINFO
 should be used).

 WORD 2: 4-character BCD type (see below)

 WORD 3: Maximum input length (halfword) and maximum
 output length (halfword)

 "Var" means variable. The value returned
 depends on the current value of the blocking
 parameters (for tapes), the LEN device com-
 mand (for terminals), the INLEN and OUTLEN
 device commands (for MNET), and the length of
 the maximum line (for files).

 Input Output Type Usage _____ ______ ____ _____

 Var 32767 FILE - line file
 Var 32767 SEQF - sequential file
 0 0 NONE - nonexistent or invalid
 file or device, access
 not allowed, wait (on
 locked file) inter-
 rupted, or cannot wait
 due to deadlock
 Var Var TTY - Teletype
 Var Var 2741 - IBM 2741, 1050 Terminals
 Var Var PDP8 - Data Concentrator
 Var Var MRXA - Memorex 1270 Controller
 255 255 DISP - IBM 2250 Display Station
 160 80 2260 - IBM 2260 Display Station
 255 Var 3270 - IBM 3270 Display Station
 254 0 HRDR - batch card input
 0 133 HPTR - *PRINT* output
 0 80 HPCH - *PUNCH* output
 0 254 HBAT - *BATCH* output
 160 0 2501 - IBM 2501 Card Reader
 160 0 RDR - IBM 2540 Card Reader
 0 80 PCH - IBM 2540 Card Punch
 0 133 PTR - IBM 1403 Printer

 202 GDINFO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 0 133 1443 - IBM 1443 Printer
 0 133 3211 - IBM 3211 Printer
 Var Var 9TP - 9-track Magnetic Tape
 Var Var 7TP - 7-track Magnetic Tape
 0 255 PTPP - Paper Tape Punch
 Var 0 PTPR - Paper Tape Reader
 Var Var SDA - Synchronous Data Adaptor
 255 255 7772 - IBM 7772 ARU
 0 32767 DUMY - *DUMMY*
 100 100 OPER - Operator job
 255 255 TEST - variable
 Var Var MNET - Merit Computer Network
 128 128 1052 - IBM 1052 Terminal
 255 Var 3066 - IBM 3066 Console
 255 132 BNCH - benchmark driver

 WORD 4: Byte 1 - FDUBTYPE field:
 0 = other
 1 = *MSOURCE*
 2 = *MSINK*
 3 = *PUNCH*
 4 = *SOURCE*
 5 = *SINK*
 6 = *AFD*
 7 = device mounted by $MOUNT command
 8 to 255 reserved for future expansion
 Byte 2 - type index:
 0 = unit record
 1 = magnetic tape
 2 = terminal
 3 = file
 4 = dummy
 5 = paper tape
 6 = operator’s console
 7 = test
 8 = NONE or illegal type
 9 to 255 reserved for future expansion
 Byte 3 - switches:
 bit 0 - on if output is OK
 bit 1 - on if input is OK
 bit 2 - on if indexed operation
 makes sense
 bit 3 - on if can be rewound
 bit 4 - on if increment given in
 FDname
 bit 5 - on if defaulted on $RUN cmd.
 bit 6 - on if part of explicit
 concatenation and not
 last member
 bit 7 - on if at least one modifier
 was given on the FDname
 Byte 4 - switches:
 bit 0 - explicit beginning line number

 GDINFO 203

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 given
 bit 1 - explicit ending line number
 given
 bit 2 - FCB/device is open
 bit 3 - info length (high-order half
 of word 14) is present
 bit 4 - macro processing is enabled
 for this FDUB
 bit 5 - last record returned was
 generated by macro processor

 WORD 5: I/O modifiers (first word)

 WORD 6: Starting line number

 WORD 7: Last line number used in I/O operation

 WORD 8: Ending line number

 WORD 9: Line number increment

 WORD 10: Pointer to FDname for current FDUB
 (halfword length followed by FDname), or
 zero

 WORD 11: Pointer to last error message associated
 with FDUB (halfword length followed by mes-
 sage), or zero

 WORD 12: Pointer to I/O error exit savearea (if
 SETIOERR has been called), or zero

 WORD 13: Return code from last I/O subroutine call

 WORD 14: GDINFO information region length in bytes
 (halfword) and device-carriage/screen width
 (or -1, if unknown) (halfword)

 WORD 15: Macro processor invocation ID if macro pro-
 cessing is enabled for this FDUB

 WORD 16: I/O modifiers (second word)

 Notes: The line numbers given in words 6, 7, 8, and 9 are
 the line numbers associated with the FDname.
 These are given in internal format, which is the
 external format (specified on the FDname) times
 1000.

 GDINFO opens the file or device (and, if a file,
 locks the file for reading) in order to obtain the
 maximum input and output lengths. If opening
 and/or locking a file might cause unwanted waiting

 204 GDINFO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 or possible deadlocks, and if the maximum lengths
 are not desired, the subroutines GDINFO2 or GDIN-
 FO3 should be called instead.

 If GDINFO is used to return information about a
 concatenation of FDnames, the information returned
 refers to the current member of the concatenation.

 The storage pointed to by GR1 was allocated by
 GETSPACE, and the user may call FREESPAC (with GR0
 = 0) to release it when it is no longer needed.
 This storage region was allocated only if GDINFO
 gave a return code of zero.

 The file use count and last reference date are not
 updated by a call to GDINFO (or GDINFO2 or
 GDINFO3).

 The setting of bit 3 in byte 15 (GDLENSW in
 GDSWS2) can be used to determine if the GDINFO
 info region length (first halfword in word 14,
 GDLEN) is present. GDLEN can be used to determine
 if the items following GDLEN are present.

| Description: A call on the GDINFOS subroutine takes the S-type parame-
| ters and loads them into an R-type call on the GDINFO
| subroutine.
|
| The information returned by GDINFO is described by the
 dsect given on the following page (from the file
 *GDINFODSECT).

 **
 *
 * Dsect for information returned by GDINFO subroutine
 *
 * (Last revised on July 20, 1985)
 *
 **
 GDDSECT DSECT
 GDFDUB DS A FDUB pointer
 GDTYPE DS CL4 Type
 GDINLEN DS H Input maximum length
 GDOUTLEN DS H Output maximum length
 GDUTYP DS X Use type:
 GDMSOURC EQU 1 Master source
 GDMSINK EQU 2 Master sink
 GDPUNCH EQU 3 Batch punch output
 GDSOURCE EQU 4 Source
 GDSINK EQU 5 Sink
 GDAFD EQU 6 Active file
 GDMOUNTD EQU 7 Allocated by $MOUNT command
 GDDTYP DS X Device type:

 GDINFO 205

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 GDUNIREC EQU 0 Unit record (incl. *...*)
 GDMAGTAP EQU 1 Magnetic tape
 GDTERM EQU 2 Terminal
 GDFILE EQU 3 Disk file (line or sequential)
 GDDUMMY EQU 4 *DUMMY*
 GDPAPTAP EQU 5 Paper tape reader
 GDOPER EQU 6 Operator’s console
 GDTEST EQU 7 DSR test device
 GDNONE EQU 8 None: device does not exist
 GDSWS DS X Switches:
 GDOUTOK EQU X’80’ Output allowed
 GDINOK EQU X’40’ Input allowed
 GDINDXOK EQU X’20’ @Indexed operations make sense
 GDREWOK EQU X’10’ Can be rewound
 GDEXINCR EQU X’08’ Explicit increment was given
 GDDEFLT EQU X’04’ Defaulted
 GDCONCAT EQU X’02’ Not the last member of expl concat
 GDEXMOD EQU X’01’ Explicit modifiers given
 GDSWS2 DS X More switches:
 GDEXBLN EQU X’80’ Explicit beg. line number given
 GDEXELN EQU X’40’ Explicit ending line number given
 GDOPEN EQU X’20’ FCB/Device is open
 GDLENSW EQU X’10’ Information length is present
 GDMACON EQU X’08’ Macro processing is enabled
 * for this FDUB
 GDMACGEN EQU X’04’ Last record returned was
 * generated by the macro processor
 GD_RPC EQU X’02’ GDINFO info returned by RPC
 GDMODS DS XL4 Modifiers on the FDname
 GDBLNR DS F Beginning line number
 GDPLNR DS F Previous line number
 GDELNR DS F Ending line number
 GDILNR DS F Increment for line number
 GDNAME DS A Locn of external name
 GDERMSG DS A Locn of last error message
 GDERSA DS A Locn of I/O error exit save area
 GDLASTRC DS F Last I/O subroutine call return code
 GDLEN DS H Length of returned information
 GDWIDTH DS H Terminal carriage or screen width
 GDMACID DS A Macro processor invocation ID if
 * macro processing is enabled
 * for this FDUB
 GDMODS2 DS XL4 Second word of modifiers on FDname
 GDDSCTL EQU *-GDDSECT Length of returned information

 206 GDINFO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 Example: Assembly: LM 0,1,SNAME
 CALL GDINFO
 .
 .
 SNAME DC CL8’SPRINT ’

 The above example calls GDINFO to get information for the
 file or device attached to the logical I/O unit SPRINT.

 GDINFO 206.1

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 206.2 GDINFO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GDINFO2 _______

 Subroutine Description

 Purpose: To get information about a file or device.

 Location: Resident System

| Alt. Entries: GDINF2, GDINFO2, GDIN2S

 Calling Sequence:

| Assembly: L 0,fdub
| CALL GDINFO2
|
| LM 0,1,name
| CALL GDINFO2
|
| CALL GDINFO2S,(unit,info),VL
|
| FORTRAN: CALL GDIN2S(unit,info,&rc4,&rc8)

 Description: This subroutine is exactly the same as the GDINFO sub-
 routine with the following exceptions:

 (1) The file or device is not opened, and (if a file)
 is not locked.
 (2) If the file or device is not already open, the
 input and output lengths are set to -1 to indicate
 that they are unknown.

 GDINFO2 207

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 208 GDINFO2

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GDINFO3 _______

 Subroutine Description

 Purpose: To get information about a file or device.

 Location: Resident System

| Alt. Entries: GDINF3, GDINFO3S, GDIN3S

 Calling Sequence:

| Assembly: L 0,fdub
| CALL GDINFO3
|
| LM 0,1,name
| CALL GDINFO3
|
| CALL GDINFO3S,(unit,info),VL
|
| FORTRAN: CALL GDIN3S(unit,info,&rc4,&rc8)

 Description: This subroutine is exactly the same as the GDINFO sub-
 routine with the following exceptions:

 (1) The file or device is opened, but (if a file) is
 not locked.
 (2) If a file, and it is not already locked, the input
 length is set to -1 to indicate that it is
 unknown.

 GDINFO3 209

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 210 GDINFO3

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GETFD _____

 Subroutine Description

 Purpose: To obtain a file or device.

 Location: Resident System

| Alt. Entry: GETFDS

 Calling Sequence:

| Assembly: LA 1,fdname
 CALL GETFD

| CALL GETFDS,(fdname,fdub),VL
|
| FORTRAN: CALL GETFDS(fdname,fdub,&rc4,&rc8,&rc12)

 Parameters:

| fdname (GR1) is the location of the first character ______
| of the FDname of the file or device wanted.
 The complete name must be terminated by a
 blank. The name does not have to be aligned.
| fdub is the memory location in which to store the ____
| pointer of the obtained file or device.
| &rc4,&rc8,&rc12 (optional) are statement labels to _______________
| transfer to if a nonzero return code occurs.

 Return Codes:

| 0 Successful return. fdub or GR0 holds the returned ____
| pointer, or the file or device is nonexistent,
| inaccessible, or invalid (see GDINFO).
| 4 Invalid address or illegal parameter.
| 8 Device is busy.
| 12 Device is not operational.

 GETFD will give a zero return code for nonexistent,
 nonaccessible, or invalid file or device names. The
 type code given by word 2 of the information area
 from GDINFO, GDINFO2, or GDINFO3 can be used to check
 for the status of the file or device. This type code
 should always be tested for the validity of the
 result from GETFD since nonzero return codes are
 rarely returned by GETFD. A type code of "NONE" will
 indicate a nonvalid result from GETFD.

 GETFD 211

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 Values Returned:

 GR0 contains the FDUB-pointer if a successful return
 is made.

 Description: If the name is a device, the device is acquired. If the
 name is a file, the file is not opened until the first
 usage. Thus this subroutine cannot determine whether or
 not the file exists. The caller can determine whether the
 file exists by calling GDINFO. The name may be a
 concatenation of file or device names each followed by
 modifiers or a line number range as described in "Files
 and Devices" in MTS Volume 1, The Michigan Terminal ______________________
 System. If the FDUB-pointer returned is used in a call to ______
 READ or WRITE, the modifiers or line number ranges will be
 used, and if a concatenation was specified, the usual
 sequencing through the concatenation will take place.

| A call on the GETFDS subroutine takes the S-type parame-
| ters and loads them into an R-type call on the GETFD
| subroutine.

 Example: Assembly: LA 1,FNAME
 CALL GETFD
 .
 .
 FNAME DC C’DATAFILE ’

| FORTRAN: LOGICAL*1 FNAME(9)/’DATAFILE ’/
| CALL GETFDS(FNAME,FDUB,&4)

 The above examples call GETFD to obtain an FDUB-pointer
 for the file DATAFILE.

 212 GETFD

 MTS 3: System Subroutine Descriptions

 April 1981

 GETFST, GETLST ______________

 Subroutine Description

 Purpose: To return the line number associated with the first or
 last line in a file, respectively.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL GETFST,(unit,linenb)

 CALL GETLST,(unit,linenb)

 FORTRAN: CALL GETFST(unit,linenb,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24)

 CALL GETLST(unit,linenb,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 linenb is the location of a fullword in which the ______
 internal line number (either first or last) ________
 will be returned.
 rc4,...,rc24 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Line number returned successfully.
 4 The file is empty.
 8 Unaddressable parameter or hardware/software
 inconsistency.
 12 Access not allowed (something other than NONE
 required).
 16 Locking the file for read will result in a
 deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent
 usage of the shared file).
 24 The file does not exist.

 GETFST, GETLST 213

 MTS 3: System Subroutine Descriptions

 April 1981

 Notes: GETFST and GETLST may be used only with line files
 or sequential-with-line-numbers files.

 In MTS, the internal line number (e.g., 2100) is
 equal to the external line number (e.g., 2.1)
 times one thousand.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from GETFST or GETLST with a return code of
 20.

 Examples: Assembly: CALL GETFST,(UNIT,FSTLN)
 .
 .
 UNIT DC CL8’SPRINT’
 FSTLN DS F Put first line number here

 The above example returns the first line number associated
 with the file attached to logical I/O unit SPRINT.

 FORTRAN: INTEGER*4 UNIT,LSTLN
 DATA UNIT/3/
 ...
 CALL GETLST(UNIT,LSTLN)

 The above example returns the last line number associated
 with the file attached to logical I/O unit 3.

 214 GETFST, GETLST

 MTS 3: System Subroutine Descriptions

 April 1981

 GETIME ______

 Subroutine Description

 Purpose: To return the time remaining until a specified timer
 interrupt will occur without canceling the interrupt.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL GETIME,(id,value,aregion)

 FORTRAN: CALL GETIME(id,value,aregion,&rc4)

 Parameters:

 id is the location of the fullword identifier __
 which specifies the timer interrupt whose
 time remaining until interruption is to be
 returned. This is the same identifier which
 was given to SETIME when the interrupt was
 set up.
 value is the location of a 4-, 8-, or 16-byte _____
 fullword-aligned region in which GETIME re-
 turns the time remaining until the interrupt
 will occur. The interpretation of this value
 depends upon the code parameter given to ____
 SETIME when the interrupt was set up. For
 codes 0 and 2, the value is an 8-byte binary
 integer specifying microseconds of task CPU
 time; for codes 1, 3, and 5, the value is an
 8-byte binary integer specifying microseconds
 of real time; for code 4, the value is a
 4-byte binary integer specifying timer units
 of task CPU time.
 aregion is the location of the address of the 76-byte _______
 exit region which was given to SETIME when
 the interrupt was set up. The combination of
 the identifier and the exit region address
 will always specify a unique timer interrupt.
 rc4 (optional) is the statement label to transfer ___
 to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
 4 No such timer interrupt was found. This means
 either:

 GETIME 215

 MTS 3: System Subroutine Descriptions

 April 1981

 (1) no such interrupt was ever set up, or
 (2) the interrupt has occurred, and the exit was
 taken before the execution of the BALR in-
 struction which branches to GETIME.

 Description: A call on the GETIME subroutine returns the time remaining
 until a specified timer interrupt will occur without
 canceling the interrupt. The timer interrupt is specified
 by the combination of the id and aregion parameters and __ _______
 the time remaining is returned in the value parameter. _____

 For further details, see also the RSTIME, SETIME, and
 TIMNTRP subroutine descriptions in this volume.

 FORTRAN users should consult the TICALL subroutine de-
 scription in this volume for details on using timer
 interrupts with FORTRAN.

 Example: Assembly: CALL GETIME,(ONE,TIMLEFT,AREG)
 .
 .
 ONE DC F’1’
 TIMLEFT DS FL8
 AREG DC A(REG)
 REG DS 19F

 FORTRAN: EXTERNAL EXIT
 INTEGER TIME(2)/0,10000/,LEFT(2),TICALL
 ...
 IREG = TICALL(0,EXIT,TIME,&4,&8)
 CALL GETIME(EXIT,LEFT,IREG,&4)

 The above example, coded in assembly language and FORTRAN,
 returns the time remaining for the interrupt with the
 identifier 1 and exit region REG. The value is returned
 in TIMLEFT.

 216 GETIME

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GETSPACE ________

 Subroutine Description

 Purpose: To acquire storage.

 Location: Resident System

| Alt. Entries: GETSPA, GETSPACS, GETSPS

 Calling Sequences:

 Assembly: L 0,switch
 L 1,length
 CALL GETSPACE

 L 0,switch
 L 1,length
 L 2,index
 CALL GETSPACE

 GETSPACE [length][,T=switch][,EXIT=err]

| CALL GETSPACS,(switch,length,index,addr),VL
|
| FORTRAN: CALL GETSPS(switch,length,index,addr,&rc4,&rc8)

 Parameters:

| switch (GR0) is a fullword of binary switches: ______

 Bit 31 = 1 Return not made unless space is
 available.
 0 Return always made with return
 code indicating whether space is
 available.
 30 = 1 Storage acquired is associated
 with the current level of LINK so
 that it is released at the next
 return from a LINK, or the next
 XCTL. This bit is ignored if bit
 28 is set.
 0 Storage acquired is associated
 with the highest level program so
 that it is not released until
 execution terminates.
 28 = 1 Use storage index number in gen-
 eral register 2.
 27 = 1 Allocate storage in the virtual
 machine segment (ignored if an

 GETSPACE 217

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 explicit segment number is given
 in general register 1).
 Other bits in GR0 must be zero.

| length (GR2) is the length (in bytes) of storage ______
 desired. If this is not a multiple of 8, the
 next largest multiple of 8 will be used. The
 upper limit for a storage request is 1,048,
 576 bytes (1 segment).

 Normally space will be allocated wherever
 available in virtual memory. However, if the
 first byte (byte 0) of GR1 is nonzero, it is
 assumed to be the number of the segment in
 which the storage is to be allocated. If
 this is an invalid number [is less than 6, or
 is greater than the maximum (currently 12)],
 or if this space request cannot be allocated
 in this segment, a return is made with a
 return code of 4.

| index (optional) (GR2) is the storage index number _____
| to associate with the allocated block. If
| index is specified, the corresponding bit in _____
| switch (bit 28) must be 1. ______
|
| addr is the returned address of the allocated ____
| block.
|
| &rc4,&rc8 (optional) are statement labels to transfer _________
| to if a nonzero return code occurs.

 A GR13 save area is not required for a call to this
 subroutine.

 Values Returned:

 GR1 contains the location of the first byte of the
 storage region acquired. The first word of this
 region is set to the length (in bytes) of the
 region.

 Return Codes:

 0 Successful return. Storage has been acquired.
 4 Space is not available.
| 8 Illegal parameter or no VL bit specified.
|
| Notes: The Array Management subroutines described in this
| volume also may be used to allocate and release
| storage.

 218 GETSPACE

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 The complete description for using the GETSPACE
 macro is given in MTS Volume 14, 360/370 Assem- ______________
 blers in MTS. ____________

| Description: A call on the GETSPACS subroutine takes the S-type
| parameters and loads them into an R-type call on the
| GETSPACE subroutine.
|
| See the "Virtual Memory Management" section in MTS Volume
 5, System Services, for further details on storage alloca- _______________
 tion and storage index numbers.

 Examples: Assembly: L 0,SWITCH
 L 1,LENGTH
 CALL GETSPACE
 .
 .
 SWITCH DC F’0’
 LENGTH DC F’256’

| FORTRAN: INTEGER SPACE
| CALL GETSPS(0,256,0,SPACE,&400)

 The above two examples call GETSPACE to acquire 256 bytes
 of storage. The storage will be associated with the
 highest level program.

 GETSPACE 219

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 220 GETSPACE

 MTS 3: System Subroutine Descriptions

 April 1981

 GFINFO ______

 Subroutine Description

 Purpose: To obtain information about a particular file or (when
 called repeatedly) all of the files in a particular
 catalog.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL GFINFO,(what,rtn,flag,cinfo,finfo,sinfo,
 ercode,errmsg),VL

 FORTRAN: CALL GFINFO(what,rtn,flag,cinfo,finfo,sinfo,
 ercode,errmsg,&rc4)

 Parameters:

 what is the location of either ____
 (a) an FDname (with a trailing blank), if
 flag bits 29-31 are 001, ____
 (b) a fullword-integer FDUB-pointer (such as
 returned by GETFD), a fullword-integer
 logical I/O unit number (0 through 99),
 or a left-justified, 8-character logical
 I/O unit name (e.g., SCARDS), if flag ____
 bits 29-31 are 010,
 (c) a 4-character signon ID of a catalog to
 be scanned, or *SYS (system file cata-
 log), or *TMP (temporary file catalog),
 if flag bits 29-31 are 011, or ____
 (d) a file-name pattern (with a trailing
 blank) containing question marks "?" as
 the match character, (e.g., 1CRB:A?, -?,
 TEST?DATA, *PASCAL?), if flag bits 29-31 ____
 are 100. The pattern algorithm is the
 same as that described for the $FILESTA-
 TUS command.
 rtn is the location of a 6-fullword integer ___
 region where the file name will be returned.
 If flag bits 29-31 are 001, this parameter on ____
 return will be the same as what. If flag ____ ____
 bits 29-31 are 010, this parameter on return
 will be the file name associated with the
 FDUB-pointer or logical I/O unit. If flag ____
 bits 29-31 are 011, this parameter on return
 will be the file name of the next file in the
 catalog being scanned, for which the request-

 GFINFO 221

 MTS 3: System Subroutine Descriptions

 April 1981

 ed information has been returned. If flag ____
 bits 29-31 are 100, this parameter on return
 will be the name of a file that matches the
 pattern and for which requested information
 has been returned. The last word of this
 region must be zero when GFINFO is called ____
 initially. In addition, this region should
 not be altered on subsequent calls if a
 catalog is being scanned (flag bits 29-31 are ____
 011 or 100) or if storage is being released
 (flag bits 29-31 are 000). The file name ____
 returned is a maximum of 5 fullwords (20
 characters) left-justified and padded with
 trailing blanks. The last word is used
 internally by GFINFO.
 flag is the location of a fullword integer of ____
 flags which affect the interpretation of the
 what and finfo parameters. The flags are as ____ _____
 follows:

 Bits 29-31: 000 Any storage allocated by
 GFINFO should be released.
 This should be specified, for
 example, to release the
 variable-length sharing list
 if such was specified, or to
 release storage if a catalog
 scan was terminated prema-
 turely. If a catalog scan is
 terminated normally via the
 "NO MORE FILES" error return,
 all storage will be released
 automatically and the caller
 need not release it.
 001 The what parameter denotes ____
 the name of a file.
 010 The what parameter denotes a ____
 FDUB pointer for a file.
 011 The what parameter indicates ____
 a catalog name to scan.
 100 The what parameter contains a ____
 file-name pattern. A scan
 will be performed on the ap-
 propriate catalog to search
 for the matching file names.
 Bit 28: If 1, this indicates the finfo _____
 information returned should only
 contain items which are not
 "expensive" to retrieve (see
 "Notes" below). Note that if
 FIAL is less than 12, no expen-
 sive information is returned nor
 retrieved from the indicated

 222 GFINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 file.
 Bits 0-27: Should be zero.

 cinfo is the location of a 25-fullword region _____
 (array) where catalog information will be
 returned. The first word of the region
 indicates the size of the region (in words).
 If this is set to less than the maximum of
 25, the caller is requesting that only the
 first "n" words of information are to be
 returned. If this word is set to zero, the
 caller is requesting that no catalog informa- __
 tion is to be returned. The second word of
 the region indicates how much information (in
 words) was actually returned by GFINFO. If
 the second word is zero on return, no infor-
 mation was returned because the appropriate
 access to the file was not allowed. Any
 access (other than none) is sufficient to
 obtain the catalog information.
 finfo is the location of a 18-fullword region _____
 (array) where file information will be re-
 turned. The first two words of the region
 are as described for the cinfo parameter. _____
 Any access (other than none) is sufficient to
 obtain the file information.
 sinfo is the location of a 6-fullword region _____
 (array) where sharing information will be
 returned. The first and second words of the
 region are as described for the cinfo and _____
 finfo parameters. Any access (other than _____
 none) is sufficient to obtain the third word
 of information, i.e., the access the caller
 has to the file. Permit access is required
 to obtain complete access information; other-
 wise, only the access relevant to the current
 userID/project number is returned. Note that
 if the first word of the region is 5 or less,
 no variable-length sharing information will
 be returned. In addition, if the second word
 of the region is 3 or less on return, the
 current user has no access to the file.
 Finally, if the variable-length sharing in-
 formation is requested and returned, the
 associated storage must be released either
 directly by calling FREESPAC or indirectly by
 calling GFINFO again with flag=0 and nothing ____
 else altered.
 ercode (optional) is the location of a fullword ______
 integer in which GFINFO will place an error
 number if an error return (return code 4) is
 made. If ercode is omitted, then the errmsq ______ ______
 parameter must also be omitted. Assembly

 GFINFO 223

 MTS 3: System Subroutine Descriptions

 April 1981

 language users wishing to omit these parame-
 ters should either follow the variable-length
 parameter list convention (high-order bit of
 the previous parameter adcon in the parameter
 list is 1) or else supply an adcon which is
 zero (rather than pointing to a zero).
 errmsq (optional) is the location of a 20-fullword ______
 (80-character) region in which GFINFO will
 place the corresponding error message if an
 error return (return code 4) is made. Assem-
 bly language users should note the convention
 for omitting optional parameters described
 above.

 Ercode Errmsq ______ ______

 1 Parameter list is pointer bad
 2 Your "file" is not a file
 3 The file does not exist
 4 No file this CCID - catalog scan
 5 No more files - catalog scan
 6 No access allowed - file xxxx
 7 Waiting will deadlock - file xxxx
 8 Wait interrupted - file xxxx
 9 Hardware error or software inconsistency
 - file xxxx
 10 Hardware error or software inconsistency
 - system catalog
 11 Insufficient access for requested infor-
 mation - file xxxx
 12 Invalid pattern was specified.
 21 First parameter (what) is bad
 22 Second parameter (rtn) is bad
 23 Third parameter (flag) is bad
 24 Fourth parameter (cinfo) is bad
 25 Fifth parameter (finfo) is bad
 26 Sixth parameter (sinfo) is bad

 If a wait to lock is interrupted by an
 attention interrupt, control passes to MTS
 unless the user program has established an
 attention interrupt exit (by calling the
 ATTNTRP subroutine). Following a $RESTART
 command or a return to the point of interrup-
 tion from the attention exit, a return is
 made from GFINFO with an error code of 8.

 rc4 (optional) is the statement label to transfer ___
 to if a nonzero return code occurs.

 224 GFINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 Some information has been returned.
 4 Error return. See the ercode and errmsq values ______ ______
 returned for the specific error.
 8 Error return. Invalid parameter addresses were
 given. No error code or error message is
 available.

 Notes:

 (1) On a catalog scan, if no information is requested,
 i.e., cinfo=finfo=sinfo=0, rtn on return will _____ _____ _____ ___
 contain the name of the next file for which some
 access (other than none) has been allowed.
 (2) The catalog information is the least expensive to
 obtain, the sharing information is moderately
 expensive, and the file information is most expen-
 sive. Concerning the file information as it
 relates to line files only, the copied size as
 well as the last five words of information (i.e.,
 number of lines, etc.) are quite expensive to
 determine. Consequently, if the first eleven
 words (or less) of file information are requested
 for a line file, only an approximation of the
 copied size will be returned. If any or all of
 the last five words are requested, a more accurate
 (but still approximate) copied size will be
 returned.
 (3) The public file *GFINFODSECT contains 3 dsects for
 assembly language users which define the format of
 the catalog information, file information, and
 sharing information. Proper use of these dsects
 will enable user programs to adapt easily to any
 additional information GFINFO may return in the
 future.
 (4) The file use count and the last reference date are
 not updated by a call to the GFINFO subroutine. ___
 (5) Specifying a file-name pattern will scan the
 catalog given or implied from the pattern, e.g.,

 1CRB:A? scans catalog for 1CRB
 TEST?DATA scans catalog for current ID
 -? scans catalog for *TMP
 *PASCAL? scans catalog for *SYS

 *TMP is the system catalog for temporary files;
 *SYS is the system catalog for public files.

 GFINFO 225

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The information returned by GFINFO is described by the
 following dsects (from the file *GFINFODSECT).

 **
 *
 * *GFINFODSECT consists of CIDSECT, FIDSECT, SIDSECT
 *
 * (Last revised on January 17, 1984)
 *
 * Catalog Information DSECT - Any access is sufficient
 * to obtain the catalog information.
 *
 * All dates in CIDSECT are returned as a Julian
 * date; that is, the number of days from March 1,
 * 1900.
 * All times in CDSECT are returned in Store Clock
 * Units; that is, (the number of microseconds since
 * January 1, 1900) * (4096).
 *
 **
 CIDSECT DSECT
 CIAL DS F Array Length - Num of words requested
 CIRL DS F Return Length - Num of words returned
 CIONID DS CL4 OwnerID - In EBCDIC
 CIVOL DS CL6 Volume Name - In EBCDIC
 DS CL2 Blanks - unused
 CIUC DS F Use Count
 CILRD DS F Last Reference Date - a Julian date
 * Obsolete. Use of CILRD_T is preferred
 CICD DS F Creation Date - a Julian date
 * Obsolete. Use of CICD_T is preferred
 CIFO DS F File Organization:
 * 0=LINE,1=SEQ,2=SEQWL
 CIDT DS F Device Type
 * 0=2311,1=2314,2=2321,3=3330,4=3350
 CIFLG DS F Bit flags as follows:
 CIPRIV EQU 1 Priviledged program
 CINOSAVE EQU 2 No file save requested
 *
 CILCD DS F Last Changed Date - Julian date
 * This is the more recent of the
 * dates of the last contents and last
 * non-contents changes. This value
 * is obsolete. Use of CILCCT and
 * CILNCCD_T is preferred.
 CIPKEY DS CL16 Program key: 1-13 characters
 CILCCT DS 2F Last Contents Change Time - Store
 * Clock Units. This is accurate to
 * one second but may become more
 * accurate in the future.
 CILNCCD DS F Last Non-Contents Change Date
 * - Julian date. This is the date
 * that information about the file

 226 GFINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 * (NOT the actual contents of the
 * file) was last changed. Use of
 * CILNCCD_T is preferred for this
 * value.
 *
 * Note: The following are the Non-Contents change,
 * Creation, and Reference dates returned in Store
 * Clock Units. Currently, these times represent
 * midnight of the corresponding date. In the future
 * these times may be kept with more accuracy.
 *
 CILNCCD_T DS 2F Last Non-Contents Change Date Time
 CICD_T DS 2F Creation Date Time
 CILRD_T DS 2F Last Reference Date Time
 CILEN EQU *-CIDSECT
 **
 *
 * File Information DSECT - Any access is sufficient to
 * obtain the File Information.
 *
 * Note: * = expensive information - zeroed if only cheap
 * information requested
 * + = information available for line files only
 *
 **
 FIDSECT DSECT
 FIAL DS F Array Length - Num of words requested
 FIRL DS F Return Length - Num of words returned
 FIFO DS F File Organization
 * 0=LINE,1=SEQ,2=SEQWL
 FIFLG DS F Flag
 * 1 = Backwards capability
 * 2 = Empty file
 FICNS DS F Current Size - pages
 FITS DS F Truncated Size - pages
 FICPS DS F Copied size - pages (see below)
 FIFLN DS F First Line Number - internal repr.
 * Zero if file is SEQ or empty
 FILLN DS F Last Line Number - internal repr.
 * Zero if file is SEQ or empty
 FIMLL DS F Maximum Length Line
 FIMXS DS F Maximum expandable file size - pages
 FINE EQU FIMXS Number of Extents - not returned
 FINL DS F Number of Lines*+
 FINH DS F Number of chunks of available space*+
 FILCNT DS F Total bytes - lines*+
 FIHCNT DS F Total bytes - available space*+
 FIMHL DS F Maximum length available space*+
 FIXF DS F File expansion factor (see below)
 FIMBC DS F Maximum Buffer Count
 FILEN EQU *-FIDSECT
 *
 * Note: The format of information returned in FIXF is as

 GFINFO 227

 MTS 3: System Subroutine Descriptions

 April 1981

 * follows: If the expansion factor is an absolute
 * amount, the value is the absolute amount;
 * If the expansion factor is a percentage,
 * is the value is the percentage expressed
 * as a negative number.
 *
 * If the expansion factor is zero then the
 * default expansion factor is used
 * (currently 10%).
 *
 * The value returned in FICPS is the same as the
 * truncated size of the file (FITS) if only the
 * cheap information has been requested.
 *
 **
 *
 * Sharing Information DSECT - Any access is sufficient
 * to obtain Sharing Information.
 *
 **
 SIDSECT DSECT
 SIAL DS F Array Length - Num of words requested
 SIRL DS F Return length - Num of words returned
 SIACC DS F Access allowed to this file for this
 * USERID-PRJNO-PKEY:
 * 1 = read access
 * 2 = write extend access
 * 4 = write change/empty access
 * 8 = renumber/truncate access
 * 16= destroy/rename access
 * 32= permit access
 * Add for multiple access
 SIGA DS F Global (others) access - see above
 SIOA DS F Owner access - see above
 * Minus one (-1) unless the caller
 * has permit access to the file
 SIPTR DS F Pointer to variable len sharing list
 * or zero if no variable sharing list
 SILEN EQU *-SIDSECT
 *
 * Permit access is required to obtain complete access
 * information, otherwise just the access that could
 * apply to the current USERID/PRJNO is returned.
 *
 * Variable-length sharing list is formatted as follows:
 *
 * 1 Word Total length (including this) - words
 *
 * 1 Word USERID/PRJNO/PKEY access - see above
 *
 * 1 Word USERID/PRJNO/PKEY flag
 * 0=PRJNO,1=USERID,2=PKEY
 * 3=PRJNO&PKEY,4=USERID&PKEY

 228 GFINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 *
 * 1 Word USERID/PRJNO length: 1-4
 * or
 * 1 Word PKEY length: 1-13
 *
 * followed by
 *
 * 4 Characters USERID/PRJNO - EBCDIC, left-justified
 * or
 * 16 Characters PKEY - EBCDIC, left-justified
 *
 * Thus, for each sharer (USERID/PRJNO/PKEY) permitted
 * access to the file, you get
 * a) 4 words (if USERID/PRJNO)
 * or b) 7 words (if PKEY).
 *
 * Note that for codes 3 (PRJNO&PKEY) and 4 (USERID&PKEY),
 * you really get 4 words (USERID/PRJNO) followed by
 * 7 words (PKEY).
 *
 * The access and flag words will be repeated and
 * identical for codes 3 and 4.
 *
 * Partially specified USERIDS, PROJNOs, and PKEYs
 * will be returned with a trailing question mark,
 * which in turn may be followed with trailing blanks.
 *
 * Fully specified PROJNOs and PKEYs may be padded
 * with trailing blanks, which are included in the
 * length returned. Fully specified public (*) PKEYs
 * are 12 characters long. Fully specified private
 * PKEYs are
 * a) 13 characters long if the caller’s CCID and the
 * CCID prefix of the PKEY are different
 * or b) 8 characters long if the CCIDs are the same.
 *
 **

 GFINFO 228.1

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CATALOG CSECT
 ENTER 12
 CALL GUSERID Get signon ID
 ST 1,WHAT Store ID in par list
 XC RTN(24),RTN Zero return region
 AGAIN CALL GFINFO,(WHAT,RTN,FLAG,CINFO,FINFO,
 SINFO,ERCODE,ERRMSG),VL
 LTR 15,15 Test return code
 BNZ ERROR Error exit
 SPRINT RTN,20 Print file name
 B AGAIN
 ERROR L 2,ERCODE Check error number
 C 2,=F’5’ No more files?
 BNE REALERR Real error
 EXIT 0 Normal exit
 REALERR SERCOM ERRMSG,80 Print error message
 CALL ERROR
 WHAT DS F ID of catalog to scan
 RTN DS 6F Return file name
 FLAG DC F’3’ Scan catalog flag
 CINFO DC F’0’ No catalog info wanted
 FINFO DC F’0’ No file info wanted
 SINFO DC F’0’ No sharing info wanted
 ERCODE DS F Return error number
 ERRMSG DS CL80 Return error message
 END

 The above program calls GFINFO to obtain all of the file
 names in the signon ID’s catalog.

 FORTRAN: IMPLICIT INTEGER*(A-Z)
 DIMENSION RTN(6),ERRMSG(20)
 DATA RTN/6*0/
 COMMON /FI/ FIAL,FIRL,FIFO,FIFLG,FICNS,FITS
 COMMON /FI/ FICPS,FIFLN,FILLN,FIMLL,FINE
 COMMON /FI/ FINL,FINH,FILCNT,FIHCNT,FIMHL
 COMMON /FI/ FIXF,FIMBC
 FIAL = 18
 CALL GFINFO(’DATAFILE ’,RTN,1,0,FIAL,0,
 * ERCODE,ERRMSG,&10)
 IF(FIRL.EQ.0) GO TO 10
 WRITE(6,101) FICNS
 WRITE(6,102) FITS
 WRITE(6,103) FICPS
 CALL SYSTEM
 10 CALL ERROR
 101 FORMAT(’ CURRENT SIZE IN PAGES=’,I5)
 102 FORMAT(’ SIZE IN PAGES IF TRUNCATED=’,I5)
 103 FORMAT(’ SIZE IN PAGES IF COPIED=’,I5)
 END

 The above program will print the current, truncated, and
 copied file size in pages for the file DATAFILE.

 228.2 GFINFO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GPRJNO ______

 Subroutine Description

 Purpose: To obtain the current 4-character project ID.

 Location: Resident System

| Alt. Entries: GPRJNOS, GPRJNS

 Calling Sequences:

 Assembly: CALL GPRJNO

| CALL GPRJNOS,(region),VL
|
| FORTRAN: CALL GPRJNS(region,&rc4)
|
| Parameters:
|
| region is the 4-byte region in which to store the ______
| projectID.
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.
|
| Return Codes:
|
| 0 Successful return.
| 4 VL bit not specified.

 A GR13 save area is not required for a call to this
 subroutine.

 Values Returned:

 GR1 contains the 4-character project ID.

| Description: A call on the GPRJNOS subroutine takes the S-type parame-
| ters and loads them into an R-type call on the GPRJNO
| subroutine.
|
| FORTRAN: CALL GPRJNS(ID)
|
| The above example returns the project ID in the region
| labelled ID.

 GPRJNO 229

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 230 GPRJNO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GPSECT, QPSECT, FPSECT ______________________

 Subroutine Description

 Purpose: To acquire, query, and release psect (dsect) storage
 allocations.

 Location: Resident System

| Alt. Entries: GPSECTS, GPSCTS, QPSECTS, QPSCTS, FPSECTS, FPSCTS

 Calling Sequences:

 Assembly: L 0,id
| L 1,len
 CALL GPSECT

 L 0,id
 CALL QPSECT

 L 0,id
 CALL FPSECT

| CALL GPSECTS,(id,len,addr),VL
|
| CALL QPSECTS,(id,addr),VL
|
| CALL FPSECTS,(id),VL
|
| FORTRAN: CALL GPSCTS(id,len,addr,&rc4,&rc8,&rc12,&rc16)
|
| CALL QPSCTS(id,addr,&rc4,&rc8,&rc12,&rc16)
|
| CALL FPSCTS(id,&rc4,&rc8,&rc12,&rc16)

 Parameters:

| id (GR0) is an unique fullword identifier for __
| the psect (i.e., a fixed address within the
 calling program could be used as such an
 identifier).
| len (GR1) is the length to be allocated, in ___
| bytes.
| addr is the address of the psect returned. ____

 A GR13 save area is not required for a call to the
 GPSECT, QPSECT, or FPSECT subroutines.

 GPSECT, QPSECT, FPSECT 231

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 Values Returned:

 GR1 (GPSECT only) contains the address of the psect
 allocated.

 GR1 (QPSECT only) contains the address of the psect
 if found, otherwise zero.

 Return Codes:

| GPSECT: 0 Psect found.
 4 Psect not found but allocated.
 8 Error return from GETSPACE subroutine.
 12 Internal error in GPSECT.
| 16 Invalid parameter(s) specified.
|
| QPSECT: 0 Psect found.
 4 Psect not found.
 8 Not used.
 12 Internal error in QPSECT.
| 16 Invalid parameter(s) specified.
|
| FPSECT: 0 Psect released.
 4 Psect not found.
 8 Error return from FREESPAC subroutine.
 12 Internal error in FPSECT.
| 16 Invalid parameter(s) specified.

 Description: The GPSECT, QPSECT, and FPSECT subroutines are used to
 acquire, query, and release storage to be used for psects
 (dsects) in the calling program. An identifier for the
 psect and the length of the psect are specified in id and __
 len. ___

 The GPSECT subroutine is used to allocate storage for the
 psect. If a psect with the identifier id already exists, __
 its address is returned and a new psect is not allocated.

 The QPSECT subroutine is used to query the existence of a
 psect with the identifier id. A new psect is not __
 allocated.

 The FPSECT subroutine is used to release the storage for
 the psect with identifier id. __

| A call on the GPSECTS, QPSECTS, and FPSECTS subroutines
| takes the S-type parameters and loads them into an R-type
| call on the corresponding GPSECT, QPSECT, and FPSECT
| subroutines.

 232 GPSECT, QPSECT, FPSECT

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 Example: Assembly: L 0,ID
 L 1,LEN
 CALL GPSECT
 .
 .
 L 0,ID
 CALL FPSECT
 .
 .
 ID DC A(ID)
 LEN DC F’4096’

 The example allocates a psect of 4096 bytes with the
 identifier which is an address contained within the
 calling program (e.g., the address of ID). The psect is
 then released later in the program.

 GPSECT, QPSECT, FPSECT 232.1

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 232.2 GPSECT, QPSECT, FPSECT

 MTS 3: System Subroutine Descriptions

 April 1981

 GRAND, GRAND1 _____________

 Subroutine Description

 Purpose: To compute normally distributed random numbers with a
 given mean and standard deviation.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL GRAND1,(value)
 CALL GRAND,(sd,amean)

 FORTRAN: CALL GRAND1(value)
 x = GRAND(sd,amean)

 Parameters:

 value is the location of a fullword integer used for _____
 generating the random number.
 sd is the location of the fullword real (REAL*4) __
 standard deviation.
 amean is the location of the fullword real (REAL*4) _____
 mean.

 Values Returned:

 FR0 will contain the normally distributed random
 number generated by the subroutine. For FORTRAN
 calls, this value will be returned in x. _

 Description: The function subroutine GRAND computes twelve uniformly
 distributed random numbers by the power-residue method
 and, based on the central limit theorem, uses these to
 compute a normally distributed random number x with mean _
 amean and standard deviation sd. Note that the result is _____ __
 returned as a function value, not as a parameter.

 If, before the first call to GRAND, the user wishes to
 specify the initial integer value from which the uniformly
 distributed random numbers are generated, he may do so by
 calling GRAND1 with value set equal to an odd integer _____ ___
 between 1 and 2³¹-1 (2147483647). If GRAND1 is not
 called, GRAND will supply its own initial value (524287).

 If the user wishes to obtain a sequence of random numbers,
 GRAND1 should be called initially followed by repeated
 calls to GRAND.

 GRAND, GRAND1 233

 MTS 3: System Subroutine Descriptions

 April 1981

 If the same sequence of random numbers is required on
 successive runs, the user must supply the same initial
 value of value to GRAND1. _____

 Examples: Assembly: CALL GRAND1,(INTEG)
 CALL GRAND,(STDEV,MEAN)
 STE 0,RAND
 .
 .
 INTEG DC F’999’
 STDEV DC E’10.0’
 MEAN DC E’100.0’
 RAND DS E

 FORTRAN: INTEG=999
 CALL GRAND1(INTEG)
 X=GRAND(10.0,100.0)

 In both examples above, GRAND is called with an initial
 value of 999, a standard deviation of 10.0, and a mean of
 100.0.

 234 GRAND, GRAND1

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GRGJULDT, GRGJULTM, GRJLSEC ___________________________

 Subroutine Description

 Purpose: To convert the Gregorian date (MM/DD/YY) or time (MM/DD/
 YYhh:mm:ss) to the corresponding Julian date or time
 (based on March 1, 1900).

 Location: Resident System

| Alt. Entries: GRJLSECS, GRJLSS

 Calling Sequences:

 Assembly: LM 0,1,grgdat
 CALL GRGJULDT

| LM 0,1,grgdat
| LM 2,3,grgtim
 CALL GRGJULTM

| LM 0,1,grgdat
| LM 2,3,grgtim
| CALL GRJLSEC
|
| CALL GRJLSECS,(grgdat,grgtim),VL
|
| FORTRAN: CALL GRJLSS(grgdat,grgtim,&rc4)

 Parameters:

 grgdat is the Gregorian date in the character form ______
 "MMxDDxYY", where "x" is any character.
| grgtim is the Gregorian time in the character form ______
| "hhxmmxss", where "x" is any character.
|
| Return Codes:
|
| 0 Successful return. Julian time is in grgtim. ______
| 4 Illegal parameter or no VL bit specified.

 Values Returned:

 GR0 contains the integer number of days through the
 given date starting with March 1, 1900 as "1".

 GR1 contains the integer number of minutes through
 the given time starting with March 1, 1900, at 00:01
 as "1" for GRGJULDT and GRGJULTM. For GRGJULDT, the
 time is assumed to be 00:00:00. GR1 contains the

 GRGJULDT, GRGJULTM, GRJLSEC 235

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 number of seconds through the given time starting
 with March 1, 1900, at 00:00:01 as "1" for GRJLSEC.

 Description: The range of years is assumed to be 1900-1999. If the
 number of seconds passed to GRGJULTM is greater than or
 equal to 30, the result in GR1 is rounded up to the next
 minute. If the time is greater than 03/19/68 03:14:07 for
 GRJLSEC, the result requires 32 bits. The results for
 dates prior to 03/01/00 are undefined.

| A call on the GRJLSECS or GRJLSS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the GRJLSEC subroutine.

 Examples: Assembly: LM 0,1,=C’05/18/71’
 CALL GRGJULDT
 ST 0,DATE
 .
 .
 DATE DS F

 The above example calls GRGJULDT to convert the Gregorian
 date May 18, 1971 into its corresponding Julian date
 26011.

 LM 0,3,=C’05-06-7116:30:17’
 CALL GRGJULTM
 ST 0,DATE
 ST 1,TIME
 .
 .
 DATE DS F
 TIME DS F

 The above example calls GRGJULTM to convert the Gregorian
 date and time May 6, 1971, 16:30:17 into its corresponding
 Julian date and time 25999 and 37438110, respectively.

 236 GRGJULDT, GRGJULTM, GRJLSEC

 MTS 3: System Subroutine Descriptions

 April 1981

 GRJLDT, GRJLTM ______________

 Subroutine Description

 Purpose: S-type (e.g., FORTRAN and PL/I) interfaces for GRGJULDT
 and GRGJULTM.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: INTEGER*4 GRJLDT
 juldat=GRJLDT(grgdat)

 INTEGER*4 GRJLTM
 jultim=GRJLTM(grgtim)

 PL/I(F): DCL PLCALLF RETURNS(FIXED BINARY(31));
 juldat=PLCALLF(GRJLDT,f1,grgdat);

 DCL PLCALLF RETURNS(FIXED BINARY(31));
 jultim=PLCALLF(GRJLTM,f1,grgtim);

 Parameters:

 grgdat is the 8-byte (REAL*8 or CHARACTER(8)) Gre- ______
 gorian date in the character form "MMxDDxYY",
 where "x" is any character.
 grgtim is the 16-byte (REAL*8(2) or CHARACTER(16)) ______
 Gregorian date and time in the character form
 "MMxDDxYYhhxmmxss", where "x" is any
 character.
 f1 is a fullword (FIXED BINARY(31)) containing __
 the integer 1.

 Values Returned:

 juldat contains the integer number of days through ______
 the given date starting with March 1, 1900, as "1"
 for calls on GRJLDT.

 jultim contains the integer number of minutes through ______
 the given time starting with March 1, 1900, at 00:01
 as "1" for calls on GRJLTM.

 Return Codes:

 0 Successful return.
 4 At least one digit position in the date or time
 does not contain a digit. Upon return, GR0 is set
 to zero.

 GRJLDT, GRJLTM 237

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The Gregorian date or time in character form is passed to
 GRGJULDT or GRGJULTM, respectively, and is converted to
 the corresponding Julian date or time. The range of years
 is assumed to be 1900-1999. If the number of seconds
 passed to GRJLTM is greater than or equal to 30, the time
 is rounded up to the next minute. The results for dates
 prior to 03/01/00 are undefined.

 Examples: FORTRAN: INTEGER*4 GRJLDT
 REAL*8 DATE
 JULIAN=GRJLDT(DATE)
 IF (JULIAN.EQ.0) GO TO 400

 The above example calls GRJLDT to convert the Gregorian
 date in the variable DATE into its corresponding Julian
 date.

 INTEGER*4 GRJLTM
 REAL*8 TIME(2)
 JULIAN=GRJLTM(TIME)
 IF (JULIAN.EQ.0) GO TO 400

 The above example calls GRJLTM to convert the Gregorian
 date and time in the array TIME into its corresponding
 Julian date and time.

 PL/I(F): JULIAN=PLCALLF(GRJLDT,F1,DATE);
 IF PL1RC¬=0 THEN GO TO ERROR;
 DECLARE JULIAN FIXED BINARY(31),
 PLCALLF RETURNS(FIXED BINARY(31)),
 GRJLDT ENTRY,
 F1 FIXED BINARY(31) INITIAL(1),
 DATE CHARACTER(8) INITIAL(’05-18-71’);
 PL1RC RETURNS (FIXED BINARY(31));

 The above example calls GRJLDT to convert the Gregorian
 date May 18, 1971 into its corresponding Julian date
 26011.

 JULIAN=PLCALLF(GRJLTM,F1,TIME);
 IF PL1RC¬=0 THEN GO TO ERROR;
 DECLARE JULIAN FIXED BINARY(31),
 PLCALLF RETURNS(FIXED BINARY(31)),
 GRJLTM ENTRY,
 F1 FIXED BINARY(31) INITIAL(1),
 TIME CHARACTER(16);
 PL1RC RETURNS (FIXED BINARY(31));

 The above example calls GRJLTM to convert the Gregorian
 date and time in the variable TIME into its corresponding
 Julian date and time.

 238 GRJLDT, GRJLTM

 MTS 3: System Subroutine Descriptions

 April 1981

 GROSDT ______

 Subroutine Description

 Purpose: To convert the Gregorian date (MM/DD/YY) to the corre-
 sponding OS date (YYddd).

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL GROSDT,(grgdat,osdat)

 FORTRAN: CALL GROSDT(grgdat,osdat,&rc4)

 REAL*8 GROSDT
 date=GROSDT(grgdat,osdat)

 PL/I(F): CALL PLCALL(GROSDT,f2,grgdat,osdat);

 DCL PLCALLD RETURNS(FLOAT(16));
 date=PLCALLD(GROSDT,f2,grgdat,osdat);

 Parameters:

 grgdat is the 8-byte (REAL*8 or CHARACTER(8)) Gre- ______
 gorian date in the character form "MMxDDxYY",
 where "x" is any character.
 osdat is 8 bytes (REAL*8 or CHARACTER(8)) into _____
 which the OS date, in the character form
 "YYddd" with three leading blanks, is placed
 on return.
 f2 is a fullword (FIXED BINARY(31)) containing __
 the integer 2.
 rc4 is a statement label to transfer to if a ___
 return code of 4 occurs.

 Values Returned:

 FR0 contains the OS date in the character form
 "YYddd" with three leading blanks. This is assigned
 to date for FORTRAN and PL/I programs using the ____
 function-call format.

 Return Codes:

 0 Successful return.
 4 At least one digit position in the date does not
 contain a digit. Upon return, FR0 and osdat _____
 contain blanks.

 GROSDT 239

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The range of years is assumed to include 1900. The result
 for dates prior to 03/01/00 is undefined.

 Examples: Assembly: CALL GROSDT,(GRDAT,OSDAT)
 .
 .
 GRDAT DC C’05-18-71’
 OSDAT DS 0D,CL8

 CALL GROSDT,(GRDAT,DUMMY)
 STD 0,OSDAT
 .
 .
 GRDAT DC C’05-18-71’
 DUMMY DS CL8
 OSDAT DS CL8

 The above two examples call GROSDT to convert the Gre-
 gorian date May 18, 1971 into the corresponding OS date
 71138. The result is stored in location OSDAT.

 FORTRAN: REAL*8 GRDAT,OSDAT
 CALL GROSDT(GRDAT,OSDAT,&400)

 REAL*8 OSDAT,GROSDT,GRDAT,DUMMY
 OSDAT=GROSDT(GRDAT,DUMMY)

 The above two examples call GROSDT to convert the Gre-
 gorian date in the variable GRDAT into the corresponding
 OS date 71138. The result is stored in the variable
 OSDAT.

 PL/I(F): CALL PLCALL(GROSDT,F2,’05-18-71’,OSDAT);
 IF PL1RC¬=0 THEN GO TO ERROR;
 DECLARE GROSDT ENTRY,
 OSDAT CHARACTER(8);
 F2 FIXED BINARY(31) INITIAL(2),
 PL1RC RETURNS (FIXED BINARY(31));

 UNSPEC(OSDAT)=UNSPEC(PLCALLD(GROSDT,F2,GRDAT,
 DUMMY));
 IF PL1RC¬=0 THEN GO TO ERROR;
 DECLARE OSDAT CHARACTER(8),
 GROSDT ENTRY,
 PLCALLD RETURNS(FLOAT(16)),
 F2 FIXED BINARY(31) INITIAL(2),
 GRDAT CHARACTER(8) INITIAL(’05-18-71’),
 DUMMY CHARACTER(8);
 PL1RC RETURNS (FIXED BINARY(31));

 The above two examples call GROSDT to convert the Gre-
 gorian date May 18, 1971 into the corresponding OS date
 71138. The result is stored in the variable OSDAT.

 240 GROSDT

 MTS 3: System Subroutine Descriptions

 April 1981

 GTDJMS ______

 Subroutine Description

 Purpose: S-type (e.g., FORTRAN and PL/I) interface for GTDJMSR.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL GTDJMS(grgtim,jms)

 PL/I(F): CALL PLCALL(GTDJMS,f2,grgtim,jms);

 Parameters:

 grgtim is the 16-byte (REAL*8(2) or CHARACTER(16)) ______
 Gregorian time and date in the character form
 "hhxmmxssMMxDDxYY", where "x" is any
 character.
 f2 is a fullword (FIXED BINARY(31)) containing __
 the integer 2.
 jms is an 8-byte integer (INTEGER*4(2) or BIT(___
 64)) containing the integer number of micro-
 seconds through the given time and date
 starting with March 1, 1900.

 Description: The Gregorian time and date in character form is passed to
 GTDJMSR and is converted to the corresponding Julian time.
 The range of years is assumed to be 1900-1999. The
 results for dates prior to March 1, 1900 are undefined.

 Examples: FORTRAN: INTEGER*4 JULIAN(2)
 REAL*8 TIME(2)
 DATA TIME/’17:59.33’,’03-21-73’/
 .
 .
 CALL GTDJMS(TIME,JULIAN)

 PL/I(F): DECLARE JULIAN BIT(64),
 GTDJMS ENTRY,
 F2 FIXED BINARY(31) INITIAL(2),
 TIME CHARACTER(16)
 INITIAL(’17:59.3303-21-73’);
 CALL PLCALL(GTDJMS,F2,TIME,JULIAN);

 The above two examples call GTDJMS to convert the Gre-
 gorian time and date 17:59.33 March 21, 1973 into the
 corresponding Julian time 000830D174704C60 (hex).

 GTDJMS 241

 MTS 3: System Subroutine Descriptions

 April 1981

 242 GTDJMS

 MTS 3: System Subroutine Descriptions

 April 1981

 GTDJMSR _______

 Subroutine Description

 Purpose: To convert the Gregorian time and date (MM-DD-YY,hh:mm.ss)
 into Julian microseconds (number of microseconds since
 March 1, 1900).

 Location: *LIBRARY

 Calling Sequences:

 Assembly: LM 0,3,grgtim
 CALL GTDJMSR

 Parameter:

 grgtim is the Gregorian time and date in the charac- ______
 ter form "hhxmmxssMMxDDxYY", where "x" is any
 character.

 Value Returned:

 GR0 and GR1 contain the (8-byte) integer number of
 microseconds through the given time starting with
 March 1, 1900.

 Description: The range of years is assumed to be 1900-1999. The
 results for dates prior to March 1, 1900 are undefined.

 See GTDJMS for S-type (e.g., FORTRAN and PL/I) interfaces.

 Example: Assembly: LM 0,3,GRGDT
 CALL GTDJMSR
 STM 0,1,JMS
 .
 .
 GRGDT DC C’17:59.3303-21-73’
 JMS DS 2F

 The above example calls GTDJMSR to convert the Gregorian
 time and date 17:59.33 March 21, 1973 into the correspond-
 ing Julian time 000830D174704C60 (hex).

 GTDJMSR 243

 MTS 3: System Subroutine Descriptions

 April 1981

 244 GTDJMSR

 MTS 3: System Subroutine Descriptions

 April 1981

 GUINFO, CUINFO ______________

 Subroutine Description

 Purpose: To allow the user to obtain information items about the
 status of the task (GUINFO) and to change some of the
 information items (CUINFO).

 Location: Resident System

 Calling Sequences:

 Assembly: CALL GUINFO,(item,loc)

 CALL CUINFO,(item,loc)

 FORTRAN: CALL GUINFO(item,loc,&rc4,&rc8,&rc12,&rc16)

 CALL CUINFO(item,loc,&rc4,&rc8,&rc12,&rc16)

 Parameters:

 item is the location of either ____
 (a) a fullword integer index number, or
 (b) an 8-character name of the item left-
 justified with trailing blanks.
 This specifies what item is to be obtained or
 changed.
 loc is the location of the region in which to place ___
 the information obtained (for GUINFO) or to
 obtain the replacement information from (for
 CUINFO). The size of the region depends upon
 the type of the item.
 rc4,...,rc16 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
 4 Error return. Item number too large or not in
 use.
 8 Error return. Item name not in the list.
 12 Error return. Illegal to change item (CUINFO
 only).
 16 Error return. Illegal parameter address, or ille-
 gal length for variable length item.

 Description: The names given in the tables below correspond to items of
 information from the system.

 GUINFO, CUINFO 245

 MTS 3: System Subroutine Descriptions

 April 1981

 There are three tables given; they are organized by item
 number, item name, and item subject. The table of item
 subjects has the following categories:

 Accounting - Batch Input and Output
 Accounting - CPU, Memory, and Paging
 Accounting - File System Storage
 Accounting - Magnetic Tapes, Paper Tapes, and Floppy
 Disks
 Accounting - Money
 Accounting - Plotter Use
 Accounting - Terminal and Merit Computer Network Use
 Accounting - User ID and Project Information
 Batch Mode Jobs
 Command Language Options
 Execution Processing
 Interrupt Processing
 I/O File and Device Names
 System Information
 Task Limits
 Task Status
 Terminal Information

 All of the items can be obtained by GUINFO, but only a
 subset of these items can be changed by CUINFO (those
 marked with an "*" after the index number in the following
 tables). Each item may be referred to by its name or by
 its index number.

 The size of the region required to contain the item and
 the interpretation of the returned value are both given in
 the following tables. The region size is independent of
 whether the item is being set (by CUINFO) or retrieved (by
 GUINFO) with the exception of the items of variable size.

 For variable length items the loc parameter consists of ___
 two fullwords followed by a region in which the informa-
 tion to be returned will be placed (for GUINFO) or from
 which the new information will be obtained (for CUINFO).
 The first fullword must be set to the length (in bytes) of
 the loc region, including both fullwords. Upon return ___
 from calls to GUINFO, the second fullword will be set to
 the length (in bytes) of the information returned. If the
 information to be returned will not fit into the region
 provided (as indicated by the length supplied in the first
 fullword of the region), the information is truncated on
 the right, but the length returned in the second fullword
 gives the length before truncation. On calls to CUINFO
 the second fullword must be set to the length (in bytes)
 of the new information that follows the leading fullwords.

 All cumulative fields are cumulative up to the time of the
 last call to GUINFUPD or later, but do not include the

 246 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 current job or any other active instances of this ID.
 CUMCELL and CUMDISK, however, are cumulative up to CELL-
 TIME and DISKTIME, respectively.

 Examples: Assembly: CALL GUINFO,(GITEM,GLOC)
 CLC GLOC,=F’0’
 BNE BATCH
 CALL CUINFO,(CITEM,CLOC)
 .
 .
 GITEM DC CL8’BATCHMD ’
 GLOC DS F
 CITEM DC CL8’PFXSTR ’
 CLOC DC A(CLEN) Region length
 DC F’2’ Prefix length
 DC C’-?’ New prefix
 CLEN EQU *-CLOC
 END

 FORTRAN: INTEGER*4 GLOC,CLOC(3)
 DATA CLOC/12,2,’-? ’/
 CALL GUINFO(’BATCHMD ’,GLOC)
 IF(GLOC.EQ.1) GO TO 10
 CALL CUINFO(’PFXSTR ’,CLOC)
 10 CONTINUE
 ...

 The above two examples call GUINFO to determine whether
 the job is running in batch or conversational mode. If
 the job is conversational, the prefix character is set to
 the two-character string "-?" by calling CUINFO.

 GUINFO, CUINFO 247

 MTS 3: System Subroutine Descriptions

 April 1981

 Table of Items Arranged by Index ________________________________

 Index Name Size Description _____ ____ ____ ___________

 1* LNS 4 Bytes Line-number separator character, left-justified
 with trailing blanks (default is ","; $SET
 LNS=c)
 2 SIGNONID 4 Bytes Current signon ID
 3* PREFIXC Fullword Current prefix character, left-justified with
 trailing blanks, as set by the SETPFX sub-
 routine or CUINFO item 257 (PFXSTR).
 4 S8NBR 8 Bytes Receipt number of job in characters, left-
 justified with trailing blanks (batch only)
 5* FILECHAR 4 Bytes File-name character, left-justified with trail-
 ing blanks (default is "#"; $SET FILECHAR=c)
 6 STORUSED Fullword CPU storage integral to STORCPUT¹. See Note
 (1).
 7* SCRFCHAR 4 Bytes Scratch-file character, left-justified with
 trailing blanks (default is "-"; $SET
 SCRFCHAR=c)
 8 CURRSTOR Fullword Current number of half-pages of VM storage.
 See Note (1).
 9* CONTCHAR 4 Bytes MTS command continuation character, left-
 justified with trailing blanks (default is "-";
 $SET CONTCHAR=c)
 10 BATCHMD Fullword Batch (1) or conversational (0) mode
 11* ICFBIT Fullword 1 -> $SET IC=OFF (default is ON)
 12 LOCSW Fullword 1 -> Local time estimate active
 13 SIGTMUT 18 Bytes Signon time (Universal Time Units). See Note
 (4).
 14 ACCTNO Fullword User account requisition number
 15* ATNBIT Fullword 1 -> Attention interrupt occurred but not taken
 (may be set to cause an attention interrupt)
 16 PROJNO 4 Bytes Project (charge) ID in characters
 17* UCBIT Fullword 1 -> $SET CASE=UC (default is MC)
 18 MAXDISK Fullword Maximum number of disk pages allowed for ID
 19* NXTSEGSW Fullword 1 -> Skip to next set of MTS command cards
 (batch only; may be set to skip unread data
 cards)
 20 MAXTERM Fullword Maximum terminal time allowed for ID (seconds)
 21* PRNTCDSW Fullword 1 -> Print next input line from source if not
 MTS command (batch only)
 22 MAXMONY Fullword Maximum charge allowed for ID (cents*100)
 23* OFFBIT Fullword 1 -> Sign off when next MTS command is read
 (same as QUIT subroutine)
 24 CURRDISK Fullword Number of pages of disk space in current use.
 See Note (2).
 25 PLOTTIME Fullword Total plot time for current job (seconds)
 26 CUMELTM Fullword Cum. terminal time for ID (seconds) (excluding
 active jobs)
 27* DUMPTYPE Fullword $SET ERRORDUMP={NOLIB|OFF|LIB} (0|1|2) (default
 NOLIB)
 28 CUMCPUTM Fullword Cum. CPU time for ID (milliseconds) (excluding

 248 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 active jobs)
 29 CUMREAD Fullword Cum. number of cards read for ID (excluding
 active jobs)
 30 CUMCORE Fullword Cum. storage integral over CPU time for ID (ex-
 cluding active jobs)²
 31 NRREAD Fullword Number of cards read for current job
 32 CUMMONY Fullword Cum. charge used for ID (cents*100) (excluding
 active jobs)
 33* LDROPT 4 Bytes Loader options switches in leftmost byte¹⁰
 35* SHFSEP 4 Bytes Shared-file separator character, left-justified
 with trailing blanks (default is ":"; $SET
 SHFSEP=c)
 36 NRDISKF Fullword Number of disk files existing for ID
 37* RF Fullword Relocation factor for ALTER/DISPLAY/MODIFY com-
 mands (Default is 0; $SET RF=xxxxxx)
 38 NRSIGS Fullword Cum. number of signons for ID (excluding active
 jobs)
 39 DEVCHAR 4 Bytes Device-name character, left-justified with
 trailing blanks (default is ">"; $SET
 DEVCHAR=c)
 40 NRBATCH Fullword Cum. number of batch jobs for ID (excluding
 active jobs)
 41* NUMBER Fullword 1 -> Automatic numbering active ($NUMBER)
 42 CUMLINES Fullword Cum. number of lines printed for ID (excluding
 active jobs)
 43* LIBROFF Fullword 1 -> $SET LIBR=OFF (default is ON)
 44 CUMPAGES Fullword Cum. number of pages printed for ID (excluding
 active jobs)
 45* AFDECHO Fullword 1 -> $SET AFDECHO=ON (default is OFF)
 46 CUMPUNCH Fullword Cum. number of cards punched for ID (excluding
 active jobs)
 47* SYMTAB Fullword 1 -> $SET SYMTAB=ON (default is ON)
 48 STORUSEE Fullword Elapsed storage integral to STORELT¹. See Note
 (1).
 49* ECHOOFF Fullword 1 -> $SET ECHO=OFF (default is ON)
 50 IDRNBR Fullword User inter-departmental requisition number
 51* ATTNOFF Fullword 1 -> Stack attention interrupts (may be set to
 inhibit attention interrupts; pending interrupt
 may be taken on call to system subroutine)
 52 UNITCODE Fullword User unit code
 54 EXPTIME Fullword ID expiration time and date³
 55* SIGSHORT Fullword $SIGNOFF {LONG|SHORT|$} (0|1|2) (default is
 LONG)
 56 SOBCDTM 16 Bytes Signon time and date in characters
 57* PFXOFF Fullword 1 -> $SET PFX=OFF (default is ON)
 58 STORCPUT Fullword Current base for CPU storage integral⁴. See
 Note (1).
 59* SEQCOFF Fullword 1 -> $SET SEQFCHK=OFF (default is ON)
 60 NRCREATE Fullword Number of files created during current job
 61* PGNTTRP 2 Words PGNTTRP exit subroutine address (1st word) and
 save area location (2nd word)
 62 NRDESTRY Fullword Number of files destroyed during current job
 63 NRLINES Fullword Number of lines printed for current job

 GUINFO, CUINFO 249

 MTS 3: System Subroutine Descriptions

 April 1981

 64 SOCPUTP Fullword Problem state CPU time used by task before cur-
 rent signon⁵
 65 NRPAGES Fullword Number of pages printed for current job
 66 SOCPUTC Fullword Supervisor state CPU time used by task before
 current signon⁵
 67 NRPUNCH Fullword Number of cards punched for current job
 68 SOELT Dblword Time of day at signon⁶
 69* ATTNTRP 2 Words ATTNTRP exit subroutine address (1st word) and
 save area location (2nd word)
 70 STORELT Fullword Current base for elapsed storage integral⁴.
 See Note (1).
 71* AFDNBR Fullword Next line number for *AFD* ($NUMBER)
 72 SOPTOD 16 Bytes Time and date for header page for batch output
 (characters)
 73* AFDINC Fullword Line-number increment for *AFD* ($NUMBER)
 74 ANSBACK 24 Bytes Answerback code (characters) (see also item
 276)
 75* SETIOERR Fullword SETIOERR exit subroutine address
 76 CUMDISK Fullword Cum. disk file storage integral to DISKTIME
 which has been charged for (page hours). See
 Note (2).
 77* ENDFILSW Fullword $SET ENDFILE={NEVER|SOURCE|ALWAYS} (0|1|2) (de-
 fault SOURCE)
 78 GLOBCPUT Fullword CPU time remaining in global time limit⁵. See
 Note (3).
 79 NRMOUNT Fullword Number of tape and other mounts for current job
 80 GLOBPGS Fullword Global page estimate
 81 TDRVT Fullword Tape drive time for current job (seconds)
 82 GLOBPCH Fullword Global card estimate
 83 PTLEN Fullword Paper tape punched for current job (inches)
 84 GLOBPTM Fullword Global plot time estimate (seconds)
 85* TDR Fullword 1 -> $SET TDR=ON (default is OFF)
 86 LOCCPUT Fullword CPU time remaining in local time limit⁵. See
 Note (3).
 87 MNETTIME Fullword Outbound Merit time for this job (seconds)
 88 LOCPGS Fullword Local page estimate
 89* CROUTE 4 Bytes Default batch station for punched output (char-
 acters) ($SET CROUTE=rmid)
 90 LOCPCH Fullword Local card estimate
 91* PROUTE 4 Bytes Default batch station for printed output (char-
 acters) ($SET PROUTE=rmid)
 92 LOCPTM Fullword Local plot time estimate (seconds)
 93* PRINT 4 Bytes Print train specification ("PN ", "TN ",
 "UC ", "MC ", or binary 0 in first byte if
 ANY)
 94 GLOBTTN Fullword Base for global time limit⁵. See Note (3).
 95 SCOPIES Fullword Number of copies of printed output requested on
 $SET COPIES=n command
 96 LOCTTN Fullword Base for local time limit⁵. See Note (3).
 98 TASKNBR Fullword Task number
 99* SEE_DISP Fullword 1 -> $SET DISPATCH=ON (default ON)
 100 TASKTYPE Fullword Task type code⁸
 104 HASPJOB Fullword 1 -> Spooled batch job

 250 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 106 MAXCELL Fullword Maximum datacell pages allowed for ID
 107 SODISKIO Fullword Number of disk operations at signon for task
 108 MAXPLOT Fullword Maximum plot time allowed for ID (seconds)
 109 CUDISKIO Fullword Total number of disk operations for task
 110 LSTRESET Fullword Last time cum. totals for this ID were reset³
 111 ASYNCCTL Fullword Asynchronous event control switch¹³
 112 DISKTIME Fullword Last time disk storage integral updated³
 113* SVCTRP 2 Words SVCTRP exit subroutine address (1st word) and
 save area location (2nd word)
 114 CELLTIME Fullword Last time datacell storage integral updated³.
 See Note (2).
 115 RUNETIME Dblword Cumulative real time for program⁵
 116 CURRCELL Fullword Number of pages of datacell files in current
 use. See Note (2).
 118 CUMCOREW Fullword Cum. storage integral over wait time for this
 ID (excluding active jobs)²
 119* EBM 8 Bytes The "execution begins" message--up to 7 charac-
 ters, terminated with an *
 120* ETM 8 Bytes The "execution terminated" message--up to 7
 characters, terminated with an *
 121* EXECPFX 4 Bytes Execution prefix character ($SET EXECPFX=c)
 (left-justified)
 122 CUMPLOT Fullword Cum. plot time for ID (seconds) (excluding
 active jobs)
 124 NRCELLF Fullword Number of datacell files existing for ID
 125* PAPER 12 Bytes $SET PAPER={PLAIN|3HOLE|ANY} (characters) (de-
 fault 0 (ANY))
 126 CUMCELL Fullword Cum. datacell file storage integral to CELLTIME
 which has been charged for (page hours). See
 Note (2).
 127* PRINTER 4 Bytes $SET PRINTER={LINE|PAGE|ANY} (characters) (de-
 fault ANY)
 128 COPIES Fullword Number of copies of printed output requested on
 $SIGNON command (batch)
 129* DELIVERY 8 Bytes $SET DELIVERY={station|NONE} (characters) (de-
 fault NONE)
 130 LINKLEVL Fullword Current link level (see MTS Vol. 5 Virtual
 Memory Management description)
 134 STORINDX Fullword Current storage index number (See MTS Vol. 5
 Virtual Memory Management description)
 136 MXSTRIND Fullword Maximum storage index number used (See MTS Vol.
 5 Virtual Memory Management description)
 138 LODRSYMT Fullword Loader symbol table location
 146 SCRFDISK Fullword Number of pages of disk scratch files for cur-
 rent job. See Note (2).
 148 SCRFCELL Fullword Number of pages of datacell scratch files for
 current job. See Note (2).
 149 LSIGTMUT 18 Bytes Last signon time (Universal Time Units). See
 Note (4).
 150 SODRMRDS Fullword Number of page-ins by task before signon
 151* SIGOFRCT Fullword 1 -> Display receipt summary at signoff
 152 LASTSOT 16 Bytes Last signon time in characters
 154 CUMMOUNT Fullword Cum. number of tape mounts for ID (excluding

 GUINFO, CUINFO 251

 MTS 3: System Subroutine Descriptions

 April 1981

 active jobs)
 156 CUMTDRVT Fullword Cum. tape drive time for ID (seconds) (exclud-
 ing active jobs)
 157 CUMPTSU Fullword Cum. phototypesetter units
 159 CUMPTSM Fullword Cum. phototypesetter media (cm²)
 158 CUMPTLEN Fullword Cum. paper tape punched for ID (inches) (ex-
 cluding active jobs)
 162 SCRDSKTM Fullword Last time scratch disk file storage integral
 updated³. See Note (2).
 164 SCRCELTM Fullword Last time scratch datacell file storage inte-
 gral updated³. See Note (2).
 166 SCRDSUSE Fullword Scratch disk file storage integral to
 SCRDSKTM⁷. See Note (2).
 167* SIGFATTN Fullword 1 -> $SET SIGFILEATTN=OFF (default is ON)
 168 SCRCLUSE Fullword Scratch datacell file storage integral to SCR-
 CELTM⁷. See Note (2).
 169* TERSE Fullword 1 -> $SET TERSE=ON (default is OFF)
 170 CUDRMRDS Fullword Current number of page-ins for current job
 171* $ON Fullword 1 -> $SET $=ON (default is OFF)
 172 CLSID Fullword Code for CLS currently in control⁹
 174 PCLSID Fullword Code for CLS that called current CLS⁹
 175* EDITAFD Fullword 1 -> $SET EDITAFD=ON (default is OFF)
 176 DEBUGCMD Fullword 1 -> If $DEBUG command active
 177* USMSG Fullword 1 -> $SET USMSG=ON (default is ON)
 178* DEBUG Fullword 1 -> $SET DEBUG=ON (default is OFF)
 179* AUTOHOLD Fullword 1 -> $SET AUTOHOLD=ON (default is OFF)
 180 LSS Fullword 1 -> If limited-service state active
 181* TRIMBIT Fullword 1 -> $SET TRIM=ON (default is ON)
 182 MAXSIG Fullword Max. number of concurrent signons allowed for
 ID (0=unlimited)
 183* EFLUEM Fullword Elementary Function Library, user error-monitor
 address
 184 CURSIG Fullword Number of times this ID currently signed on
 185* CMDSKP Fullword 1 -> $SET CMDSKP=OFF (default is OFF)
 186 UNCHDISK Fullword Disk space to DISKTIME not yet charged for⁷
 187* PRMAPOFF Fullword 1 -> $SET PRMAP=OFF (default is OFF)
 188 UNCHCELL Fullword Datacell space to CELLTIME not yet charged for⁷
 189* PDMAPOFF Fullword 1 -> $SET PDMAP=OFF (default is OFF)
 190 MAXMNET Fullword Maximum outbound Merit time (seconds)
 191* UXREF Fullword 1 -> $SET UXREF=ON (default is OFF)
 192 CUMMNET Fullword Cum. outbound Merit for this ID excluding
 active jobs (seconds)
 193* XREF Fullword 1 -> $SET XREF=ON (default is OFF)
 194 MXMNETBT Fullword 1 -> Ignore maximum MNET time (item 190)
 195* NO*LIB Fullword 1 -> $SET *LIBRARY=OFF (default is ON)
 196 MXPLOTBT Fullword 1 -> Ignore maximum plot time (item 108)
 197* MAPDOTS Fullword 1 -> $SET MAPDOTS=ON (default is ON)
 199* NOERRMAP Fullword 1 -> $SET ERRMAP=OFF (default is ON)
 226 INSIGFIL Fullword 1 -> Currently processing sigfile
 227 PLOTPAPR Fullword Plotter paper used for current job (.01 inches)
 228 TOFFSET Dblword Offset (microseconds times 4096) to be added to
 GMT to get local time
 229 PLOTPENC Fullword Plotter pen changes for current job

 252 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 230 TIMEFDGE Dblword Value (microseconds times 4096) to be added to
 IBM time (as stored by a STCK instruction) to
 get time based on March 1, 1900
 231* SPELLCOR Fullword $SET SPELLCOR={OFF|PROMPT|ON} (0|3|1) (default
 is PROMPT)
 232 CUMPLPAP Fullword Cum. plotter paper used for ID (.01 inches)
 (excluding active jobs)
 234 CUMPLPEN Fullword Cum. plot pen changes for ID (excluding active
 jobs)
 236 PKEY 16 Bytes Program key under which calling program is
 running
 237* RCPRINT Fullword $SET RCPRINT={NEVER|POS|NONNEG|ALWAYS|NONZERO}
 (0|1|2|3|4)
 238 RUNONLY Fullword 1 -> A "run only" program is loaded (from a
 file to which the user has only RUN access)
 239 LASTEXRC Fullword Return code of last program executed
 240 SYSOLOAD Fullword System overload indicators, right-justified
 with leading zeros¹¹
 241 SIGCFLD Variable The comment field from the MTS $SIGNON command,
 without the enclosing primes (from 0 to 255
 characters in length)
 242 PRIO Fullword Priority of job¹²
 247* SFATTN Fullword 1 -> $SET SIGFILEATTN=OFF (default is ON)
 249 PSFATTN Fullword 1 -> Project sigfile attention bit is off
 251* CMDSCNBT Fullword 1 -> $SET CMDSCAN=UNAMBIGUOUS (default is
 UNAMBIGUOUS)
 252 UNATMODE Fullword 1 -> System running in "unattended mode" (see
 also item 277)
 253 LOCLIMIT Fullword Local time limit in effect⁵
 254 RUNTIME Fullword Amount of time used during execution of current
 program⁵. This total is updated only when exe-
 cution mode is exited, e.g., if program calls
 MTS
 255 PARSTRMC Variable The PAR string from the MTS $RUN command in
 mixed-case (from 0 to 255 characters)
 257* PFXSTR Variable Prefix string which normally appears at the
 beginning of terminal input and output lines
 (from 0 to 120 characters in length)
 258 PARSTR Variable The PAR string from the MTS $RUN command con-
 verted to uppercase (from 0 to 255 characters)
 259 EXPRESS Fullword 1 -> User is at an express terminal
 260 TERMLOC 4 Bytes 1 -> 4-character terminal location code or
 binary zero, if unknown
 261 PRDRMNTS Fullword Current number of paper-tape reader mounts
 262 PRDRDRVT Fullword Current paper-tape reader drive time (seconds)
 263 PPCHMNTS Fullword Current number of paper-tape punch mounts
 264 PPCHDRVT Fullword Current paper-tape punch drive time (seconds)
 265 FLPYMNTS Fullword Current number of floppy-disk mounts
 266 FLPYDRVT Fullword Current floppy-disk drive time (seconds)
 267 CUMPTRMT Fullword Cum. number of paper-tape reader mounts
 268 CUMPTRDT Fullword Cum. paper-tape reader drive time (seconds)
 269 CUMPTPMT Fullword Cum. number of paper-tape punch mounts
 270 CUMPTPDT Fullword Cum. paper-tape punch drive time (seconds)

 GUINFO, CUINFO 253

 MTS 3: System Subroutine Descriptions

 April 1981

 271 CUMFLPMT Fullword Cum. number of floppy-disk mounts
 272 CUMFLPDT Fullword Cum. floppy-disk drive time (seconds)
 276 ANSBACKL Variable Answerback code (characters) (see also item 74)
 277 NOMOUNTS Fullword 1 -> No tape or floppy-disk mounts allowed (see
 also item 252)
 293 ONSHORT Fullword 1 -> $SIGNON SHORT
 294 TAPEQ Fullword 1 -> Tape mount queuing is enabled
 295 TAPEQLEN Fullword Length of current tape mount queue
 296 PWSETBYC Fullword 1 -> Password set by Computing Center
 298 USERNAME Variable $SET NAME=name (from 1 to 64 characters)
 300 DFLTMBOX 16 Bytes Default mailbox (characters)
 301 NAMELIB Variable File name for $SET NAMELIB=filename
 302* INITEDIT Variable File name for $SET INITFILE(EDIT)=FDname
 303* INITSDS Variable File name for $SET INITFILE(SDS)=FDname
 304* INITCALC Variable File name for $SET INITFILE(CALC)=FDname
 305* INITTST Variable File name for $SET INITFILE(TST)=FDname
 306* INITNET Variable File name for $SET INITFILE(NET)=FDname
 307* INITSSTA Variable File name for $SET INITFILE(SSTA)=FDname
 308* INITACC Variable File name for $SET INITFILE(ACC)=FDname
 309* INITNEW Variable File name for $SET INITFILE(NEW)=FDname
 310* INITNEW2 Variable File name for $SET INITFILE(NEW2)=FDname
 311* INITNEW3 Variable File name for $SET INITFILE(NEW3)=FDname
 312* INITPMF Variable File name for $SET INITFILE(PMF)=FDname
 313* INITMESS Variable File name for $SET INITFILE(MSG)=FDname
 314* INITFMNU Variable File name for $SET INITFILE(FMNU)=FDname
 315* INITMAKE Variable File name for $SET INITFILE(MAKE)=FDname
 316* INITLIST Variable File name for $SET INITFILE(LIST)=FDname
 320 PAGPRLIN Fullword Current number of page printer lines
 321 PAGPRPAG Fullword Current number of page printer pages
 322 PAGPRIMG Fullword Current number of page printer images
 323 PAGPRSHT Fullword Current number of page printer sheets
 324 CUMPPL Fullword Cum. number of page printer lines
 325 CUMPPP Fullword Cum. number of page printer pages
 326 CUMPPI Fullword Cum. number of page printer images
 327 CUMPPS Fullword Cum. number of page printer sheets
 328 MACECHO Fullword SET MACROECHO={OFF|ON|ALL|ERROR} (0|1|2|3) (de-
 fault OFF)
 329 MACTRACE Fullword SET MACROTRACE={OFF|ON} (0|1) (default OFF)
 330 MACRO Fullword $SET MACROS={OFF|ON} (0|1|2) (default OFF)
 334 TZONOFST Fullword Current time zone offset from GMT (minutes)
 335 TZONNAME 8 Bytes Current time zone name (characters, left-
 justified with trailing blanks)
 375* NEWFILAC Variable $SET NEWFILEACCESS={’string’|OFF} (default OFF)
 (from 0 to 255 characters)
 377 MTSMODEL 5 Bytes MTS model number (characters)
 386 PROJSIGF Variable File name for project sigfile
 387 USERSIGF Variable File name for user sigfile (current sign-on)
 388* NEWSIGF Variable File name for user sigfile (next sign-on)
 391* LIBSRCH Variable $SET LIBSRCH={FDname|OFF} (default OFF)
 392* TIMLIMIT Fullword $SET TIME={n|OFF}⁵
 393 PRJPWCHG Fullword 1 -> $SET PROJECTPWCHANGE=ON (default OFF)
 400* ERRPRMPT Fullword 1 -> $SET ERRORPROMPT=ON (default ON)
 416 CPUCOST Fullword Cum. CPU cost for task (cents*100)

 254 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 417 VMICOST Fullword Cum. VMI cost for task (cents*100)
 418 HOSTNAME 8 Bytes Host name (characters)
 429 TYPEPTUS Fullword Cum. phototypesetter units for task
 430 TYPEPAPR Fullword Cum. phototypesetter media for task (cm²)
 432 CKIDNOPW Fullword 1 -> CKID does not need to check password
 433 SERVER Fullword 1 -> The job is a server program
 440 PKEYSTR Variable Current Pkey
 451* SRVREPLY Fullword 1 -> $SET SRVREPLY=ON (default OFF)

 GUINFO, CUINFO 255

 MTS 3: System Subroutine Descriptions

 April 1981

 Table of Items Arranged by Name _______________________________

 Name Index Size Description ____ _____ ____ ___________

 $ON 171* Fullword 1 -> $SET $=ON (default is OFF)
 ACCTNO 14 Fullword User account requisition number
 AFDECHO 45* Fullword 1 -> $SET AFDECHO=ON (default is OFF)
 AFDINC 73* Fullword Line-number increment for *AFD* ($NUMBER)
 AFDNBR 71* Fullword Next line number for *AFD* ($NUMBER)
 ANSBACK 74 24 Bytes Answerback code (characters) (see also item
 276)
 ANSBACKL 276 Variable Answerback code (characters) (see also item 74)
 ASYNCCTL 111 Fullword Asynchronous event control switch¹³
 ATNBIT 15* Fullword 1 -> Attention interrupt occurred but not taken
 (may be set to cause an attention interrupt)
 ATTNOFF 51* Fullword 1 -> Stack attention interrupts (may be set to
 inhibit attention interrupts; pending interrupt
 may be taken on call to system subroutine)
 ATTNTRP 69* 2 Words ATTNTRP exit subroutine address (1st word) and
 save area location (2nd word)
 AUTOHOLD 179* Fullword 1 -> $SET AUTOHOLD=ON (default is OFF)
 BATCHMD 10 Fullword Batch (1) or conversational (0) mode
 CELLTIME 114 Fullword Last time datacell storage integral updated³.
 See Note (2).
 CKIDNOPW 432 Fullword 1 -> CKID does not need to check password
 CLSID 172 Fullword Code for CLS currently in control⁹
 CMDSCNBT 251* Fullword 1 -> $SET CMDSCAN=UNAMBIGUOUS (default is
 UNAMBIGUOUS)
 CMDSKP 185* Fullword 1 -> $SET CMDSKP=OFF (default is OFF)
 CONTCHAR 9* 4 Bytes MTS command continuation character, left-
 justified with trailing blanks (default is "-";
 $SET CONTCHAR=c)
 COPIES 128 Fullword Number of copies of printed output requested on
 $SIGNON command (batch)
 CPUCOST 416 Fullword Cum. CPU cost for task (cents*100)
 CROUTE 89* 4 Bytes Default batch station for punched output (char-
 acters) ($SET CROUTE=rmid)
 CUDISKIO 109 Fullword Total number of disk operations for task
 CUDRMRDS 170 Fullword Current number of page-ins for current job
 CUMCELL 126 Fullword Cum. datacell file storage integral to CELLTIME
 which has been charged for (page hours). See
 Note (2).
 CUMCORE 30 Fullword Cum. storage integral over CPU time for ID (ex-
 cluding active jobs)²
 CUMCOREW 118 Fullword Cum. storage integral over wait time for this
 ID (excluding active jobs)²
 CUMCPUTM 28 Fullword Cum. CPU time for ID (milliseconds) (excluding
 active jobs)
 CUMDISK 76 Fullword Cum. disk file storage integral to DISKTIME
 which has been charged for (page hours). See
 Note (2).
 CUMELTM 26 Fullword Cum. terminal time for ID (seconds) (excluding
 active jobs)

 256 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 CUMFLPDT 272 Fullword Cum. floppy-disk drive time (seconds)
 CUMFLPMT 271 Fullword Cum. number of floppy-disk mounts
 CUMLINES 42 Fullword Cum. number of lines printed for ID (excluding
 active jobs)
 CUMMNET 192 Fullword Cum. outbound Merit for this ID excluding
 active jobs (seconds)
 CUMMONY 32 Fullword Cum. charge used for ID (cents*100) (excluding
 active jobs)
 CUMMOUNT 154 Fullword Cum. number of tape mounts for ID (excluding
 active jobs)
 CUMPAGES 44 Fullword Cum. number of pages printed for ID (excluding
 active jobs)
 CUMPLOT 122 Fullword Cum. plot time for ID (seconds) (excluding
 active jobs)
 CUMPLPAP 232 Fullword Cum. plotter paper used for ID (.01 inches)
 (excluding active jobs)
 CUMPLPEN 234 Fullword Cum. plot pen changes for ID (excluding active
 jobs)
 CUMPPI 326 Fullword Cum. number of page printer images
 CUMPPL 324 Fullword Cum. number of page printer lines
 CUMPPP 325 Fullword Cum. number of page printer pages
 CUMPPS 327 Fullword Cum. number of page printer sheets
 CUMPTLEN 158 Fullword Cum. paper tape punched for ID (inches) (ex-
 cluding active jobs)
 CUMPTPDT 270 Fullword Cum. paper-tape punch drive time (seconds)
 CUMPTPMT 269 Fullword Cum. number of paper-tape punch mounts
 CUMPTRDT 268 Fullword Cum. paper-tape reader drive time (seconds)
 CUMPTRMT 267 Fullword Cum. number of paper-tape reader mounts
 CUMPTSM 159 Fullword Cum. phototypesetter media (cm²)
 CUMPTSU 157 Fullword Cum. phototypesetter units
 CUMPUNCH 46 Fullword Cum. number of cards punched for ID (excluding
 active jobs)
 CUMREAD 29 Fullword Cum. number of cards read for ID (excluding
 active jobs)
 CUMTDRVT 156 Fullword Cum. tape drive time for ID (seconds) (exclud-
 ing active jobs)
 CURRCELL 116 Fullword Number of pages of datacell files in current
 use. See Note (2).
 CURRDISK 24 Fullword Number of pages of disk space in current use.
 See Note (2).
 CURRSTOR 8 Fullword Current number of half-pages of VM storage.
 See Note (1).
 CURSIG 184 Fullword Number of times this ID currently signed on
 DEBUG 178* Fullword 1 -> $SET DEBUG=ON (default is OFF)
 DEBUGCMD 176 Fullword 1 -> If $DEBUG command active
 DELIVERY 129* 8 Bytes $SET DELIVERY={station|NONE} (characters) (de-
 fault NONE)
 DEVCHAR 39 4 Bytes Device-name character, left-justified with
 trailing blanks (default is ">"; $SET
 DEVCHAR=c)
 DFLTMBOX 300 16 Bytes Default mailbox (characters)
 DISKTIME 112 Fullword Last time disk storage integral updated³. See
 Note (2).

 GUINFO, CUINFO 257

 MTS 3: System Subroutine Descriptions

 April 1981

 DUMPTYPE 27* Fullword $SET ERRORDUMP={NOLIB|ON|LIB} (0|1|2) (default
 NOLIB)
 EBM 119* 8 Bytes The "execution begins" message--up to 7 charac-
 ters, terminated with an *
 ECHOOFF 49* Fullword 1 -> $SET ECHO=OFF (default is ON)
 EDITAFD 175* Fullword 1 -> $SET EDITAFD=ON (default is OFF)
 EFLUEM 183* Fullword Elementary Function Library, user error-monitor
 address
 ENDFILSW 77* Fullword $SET ENDFILE={NEVER|SOURCE|ALWAYS} (0|1|2) (de-
 fault SOURCE)
 ERRPRMPT 400* Fullword 1 -> $SET ERRORPROMPT=ON (default ON)
 ETM 120* 8 Bytes The "execution terminated" message--up to 7
 characters, terminated with an *
 EXECPFX 121* 4 Bytes Execution prefix character ($SET EXECPFX=c)
 (left-justified)
 EXPRESS 259 Fullword 1 -> User is at an express terminal
 EXPTIME 54 Fullword ID expiration time and date³
 FILECHAR 5* 4 Bytes File-name character, left-justified with trail-
 ing blanks (default is "#"; $SET FILECHAR=c)
 FLPYDRVT 266 Fullword Current floppy-disk drive time (seconds)
 FLPYMNTS 265 Fullword Current number of floppy-disk mounts
 GLOBCPUT 78 Fullword CPU time remaining in global time limit⁵. See
 Note (3).
 GLOBPCH 82 Fullword Global card estimate
 GLOBPGS 80 Fullword Global page estimate
 GLOBPTM 84 Fullword Global plot time estimate (seconds)
 GLOBTTN 94 Fullword Base for global time limit⁵. See Note (3).
 HASPJOB 104 Fullword 1 -> Spooled batch job
 HOSTNAME 418 8 Bytes Host name (characters)
 ICFBIT 11* Fullword 1 -> $SET IC=OFF (default is ON)
 IDRNBR 50 Fullword User inter-departmental requisition number
 INITACC 308* Variable File name for $SET INITFILE(ACC)=FDname
 INITCALC 304* Variable File name for $SET INITFILE(CALC)=FDname
 INITEDIT 302* Variable File name for $SET INITFILE(EDIT)=FDname
 INITFMNU 314* Variable File name for $SET INITFILE(FMNU)=FDname
 INITLIST 316* Variable File name for $SET INITFILE(LIST)=FDname
 INITMAKE 315* Variable File name for $SET INITFILE(MAKE)=FDname
 INITMESS 313* Variable File name for $SET INITFILE(MSG)=FDname
 INITNET 306* Variable File name for $SET INITFILE(NET)=FDname
 INITNEW 309* Variable File name for $SET INITFILE(NEW)=FDname
 INITNEW2 310* Variable File name for $SET INITFILE(NEW2)=FDname
 INITNEW3 311* Variable File name for $SET INITFILE(NEW3)=FDname
 INITPMF 312* Variable File name for $SET INITFILE(PMF)=FDname
 INITSDS 303* Variable File name for $SET INITFILE(SDS)=FDname
 INITSSTA 307* Variable File name for $SET INITFILE(SSTA)=FDname
 INITTST 305* Variable File name for $SET INITFILE(TST)=FDname
 INSIGFIL 226 Fullword 1 -> Currently processing sigfile
 LASTEXRC 239 Fullword Return code of last program executed
 LASTSOT 152 16 Bytes Last signon time in characters
 LDROPT 33* 4 Bytes Loader options switches in leftmost byte¹⁰
 LIBROFF 43* Fullword 1 -> $SET LIBR=OFF (default is ON)
 LIBSRCH 391* Variable $SET LIBSRCH={FDname|OFF} (default OFF)
 LINKLEVL 130 Fullword Current link level (see MTS Vol. 5 Virtual

 258 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 Memory Management description)
 LNS 1* 4 Bytes Line-number separator character, left-justified
 with trailing blanks (default is ","; $SET
 LNS=c)
 LOCCPUT 86 Fullword CPU time remaining in local time limit⁵. See
 Note (3).
 LOCLIMIT 253 Fullword Local time limit in effect⁵
 LOCPCH 90 Fullword Local card estimate
 LOCPGS 88 Fullword Local page estimate
 LOCPTM 92 Fullword Local plot time estimate (seconds)
 LOCSW 12 Fullword 1 -> Local time estimate active
 LOCTTN 96 Fullword Base for local time limit⁵. See Note (3).
 LODRSYMT 138 Fullword Loader symbol table location
 LSIGTMUT 149 18 Bytes Last signon time (Universal Time Units). See
 Note (4).
 LSS 180 Fullword 1 -> If limited-service state active
 LSTRESET 110 Fullword Last time cum. totals for this ID were reset³
 MACECHO 328 Fullword SET MACROECHO={OFF|ON|ALL|ERROR} (0|1|2|3) (de-
 fault OFF)
 MACTRACE 329 Fullword SET MACROTRACE={OFF|ON} (0|1) (default OFF)
 MACRO 330 Fullword $SET MACROS={OFF|ON} (0|1|2) (default OFF)
 MAPDOTS 197* Fullword 1 -> $SET MAPDOTS=ON (default is ON)
 MAXCELL 106 Fullword Maximum datacell pages allowed for ID
 MAXDISK 18 Fullword Maximum number of disk pages allowed for ID
 MAXMNET 190 Fullword Maximum outbound Merit time (seconds)
 MAXMONY 22 Fullword Maximum charge allowed for ID (cents*100)
 MAXPLOT 108 Fullword Maximum plot time allowed for ID (seconds)
 MAXSIG 182 Fullword Max. number of concurrent signons allowed for
 ID (0=unlimited)
 MAXTERM 20 Fullword Maximum terminal time allowed for ID (seconds)
 MNETTIME 87 Fullword Outbound Merit time for this job (seconds)
 MTSMODEL 377 5 Bytes MTS model number (characters)
 MXMNETBT 194 Fullword 1 -> Ignore maximum MNET time (item 190)
 MXPLOTBT 196 Fullword 1 -> Ignore maximum plot time (item 108)
 MXSTRIND 136 Fullword Maximum storage index number used (See MTS Vol.
 5 Virtual Memory Management description)
 NAMELIB 301 Variable File name for $SET NAMELIB=filename
 NEWFILAC 375* Variable $SET NEWFILEACCESS={’string’|OFF} (default OFF)
 (from 0 to 255 characters)
 NEWSIGF 388* Variable File name for user sigfile (next sign-on)
 NO*LIB 195* Fullword 1 -> $SET *LIBRARY=OFF (default is ON)
 NOERRMAP 199* Fullword 1 -> $SET ERRMAP=OFF (default is ON)
 NOMOUNTS 277 Fullword 1 -> No tape or floppy-disk mounts allowed (see
 also item 252)
 NRBATCH 40 Fullword Cum. number of batch jobs for ID (excluding
 active jobs)
 NRCELLF 124 Fullword Number of datacell files existing for ID
 NRCREATE 60 Fullword Number of files created during current job
 NRDESTRY 62 Fullword Number of files destroyed during current job
 NRDISKF 36 Fullword Number of disk files existing for ID
 NRLINES 63 Fullword Number of lines printed for current job
 NRMOUNT 79 Fullword Number of tape and other mounts for current job
 NRPAGES 65 Fullword Number of pages printed for current job

 GUINFO, CUINFO 259

 MTS 3: System Subroutine Descriptions

 April 1981

 NRPUNCH 67 Fullword Number of cards punched for current job
 NRREAD 31 Fullword Number of cards read for current job
 NRSIGS 38 Fullword Cum. number of signons for ID (excluding active
 jobs)
 NUMBER 41* Fullword 1 -> Automatic numbering active ($NUMBER)
 NXTSEGSW 19* Fullword 1 -> Skip to next set of MTS command cards
 (batch only; may be set to skip unread data
 ONSHORT 293 Fullword 1 -> $SIGNON SHORT
 OFFBIT 23* Fullword 1 -> Sign off when next MTS command is read
 (same as QUIT subroutine)
 PAGPRIMG 322 Fullword Current number of page printer images
 PAGPRLIN 320 Fullword Current number of page printer lines
 PAGPRPAG 321 Fullword Current number of page printer pages
 PAGPRSHT 323 Fullword Current number of page printer sheets
 PAPER 125* 12 Bytes $SET PAPER={PLAIN|3HOLE|ANY} (characters) (de-
 fault 0 (ANY))
 PARSTR 258 Variable The PAR string from the MTS $RUN command con-
 verted to uppercase (from 0 to 255 characters)
 PARSTRMC 255 Variable The PAR string from the MTS $RUN command in
 mixed-case (from 0 to 255 characters)
 PCLSID 174 Fullword Code for CLS that called current CLS⁹
 PDMAPOFF 189* Fullword 1 -> $SET PDMAP=OFF (default is OFF)
 PFXOFF 57* Fullword 1 -> $SET PFX=OFF (default is ON)
 PFXSTR 257* Variable Prefix string which normally appears at the
 beginning of terminal input and output lines
 (from 0 to 120 characters in length)
 PGNTTRP 61* 2 Words PGNTTRP exit subroutine address (1st word) and
 save area location (2nd word)
 PKEY 236 16 Bytes Program key under which calling program is
 running
 PKEYSTR 440 Variable Current Pkey
 PLOTPAPR 227 Fullword Plotter paper used for current job (.01 inches)
 PLOTPENC 229 Fullword Plotter pen changes for current job
 PLOTTIME 25 Fullword Total plot time for current job (seconds)
 PPCHDRVT 264 Fullword Current paper-tape punch drive time (seconds)
 PPCHMNTS 263 Fullword Current number of paper-tape punch mounts
 PRDRDRVT 262 Fullword Current paper-tape reader drive time (seconds)
 PRDRMNTS 261 Fullword Current number of paper-tape reader mounts
 PREFIXC 3* Fullword Current prefix character, left-justified with
 trailing blanks, as set by the SETPFX sub-
 routine or CUINFO item 257 (PFXSTR).
 PRINT 93* 4 Bytes Print train specification ("PN ", "TN ",
 "UC ", "MC ", or binary 0 in first byte if
 ANY)
 PRINTER 127* 4 Bytes $SET PRINTER={LINE|PAGE|ANY} (characters) (de-
 fault ANY)
 PRIO 242 Fullword Priority of job¹²
 PRJPWCHG 393 Fullword 1 -> $SET PROJECTPWCHANGE=ON (default OFF)
 PRMAPOFF 187* Fullword 1 -> $SET PRMAP=OFF (default is OFF)
 PRNTCDSW 21* Fullword 1 -> Print next input line from source if not
 MTS command (batch only)
 PROJNO 16 4 Bytes Project (charge) ID in characters
 PROJSIGF 386 Variable File name for project sigfile

 260 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 PROUTE 91* 4 Bytes Default batch station for printed output (char-
 acters) ($SET PROUTE=rmid)
 PSFATTN 249 Fullword 1 -> Project sigfile attention bit is off
 PTLEN 83 Fullword Paper tape punched for current job (inches)
 PWSETBYC 296 Fullword 1 -> Password set by Computing Center
 RCPRINT 237* Fullword $SET RCPRINT={NEVER|POS|NONNEG|ALWAYS|NONZERO}
 (0|1|2|3|4)
 RF 37* Fullword Relocation factor for ALTER/DISPLAY/MODIFY com-
 mands (Default is 0; $SET RF=xxxxxx)
 RUNETIME 115 Dblword Cumulative real time for program⁵
 RUNONLY 238 Fullword 1 -> A "run only" program is loaded (from a
 file to which the user has only RUN access)
 RUNTIME 254 Fullword Amount of time used during execution of current
 program⁵. This total is updated only when exe-
 cution mode is exited, e.g., if program calls
 MTS
 SCOPIES 95 Fullword Number of copies of printed output requested on
 $SET COPIES=n command
 SCRCELTM 164 Fullword Last time scratch datacell file storage inte-
 gral updated³. See Note (2).
 SCRCLUSE 168 Fullword Scratch datacell file storage integral to SCR-
 CELTM⁷. See Note (2).
 SCRDSKTM 162 Fullword Last time scratch disk file storage integral
 updated³. See Note (2).
 SCRDSUSE 166 Fullword Scratch disk file storage integral to
 SCRDSKTM⁷. See Note (2).
 SCRFCELL 148 Fullword Number of pages of datacell scratch files for
 current job. See Note (2).
 SCRFCHAR 7* 4 Bytes Scratch-file character, left-justified with
 trailing blanks (default is "-"; $SET
 SCRFCHAR=c)
 SCRFDISK 146 Fullword Number of pages of disk scratch files for cur-
 rent job. See Note (2).
 SEE_DISP 99* Fullword 1 -> $SET DISPATCH=ON (default ON)
 SEQCOFF 59* Fullword 1 -> $SET SEQFCHK=OFF (default is ON)
 SERVER 433 Fullword 1 -> The job is a server program
 SETIOERR 75* Fullword SETIOERR exit subroutine address
 SFATTN 247* Fullword 1 -> $SET SIGFILEATTN=OFF (default is ON)
 SHFSEP 35* 4 Bytes Shared-file separator character, left-justified
 with trailing blanks (default is ":"; $SET
 SHFSEP=c)
 SIGCFLD 241 Variable The comment field from the MTS $SIGNON command,
 without the enclosing primes (from 0 to 255
 characters in length)
 SIGFATTN 167* Fullword 1 -> $SET SIGFILEATTN=OFF (default is ON)
 SIGNONID 2 4 Bytes Current signon ID
 SIGOFRCT 151* Fullword 1 -> Display receipt summary at signoff
 SIGSHORT 55* Fullword $SIGNOFF {LONG|SHORT|$} (0|1|2) (default is
 LONG)
 SIGTMUT 13 18 Bytes Signon time (Universal Time Units). See Note
 (4).
 SOBCDTM 56 16 Bytes Signon time and date in characters
 SOCPUTC 66 Fullword Supervisor state CPU time used by task before

 GUINFO, CUINFO 261

 MTS 3: System Subroutine Descriptions

 April 1981

 current signon⁵
 SOCPUTP 64 Fullword Problem state CPU time used by task before cur-
 rent signon⁵
 SODISKIO 107 Fullword Number of disk operations at signon for task
 SODRMRDS 150 Fullword Number of page-ins by task before signon
 SOELT 68 Dblword Time of day at signon⁶
 SOPTOD 72 16 Bytes Time and date for header page for batch output
 (characters)
 SPELLCOR 231* Fullword $SET SPELLCOR={OFF|PROMPT|ON} (0|3|1) (default
 is PROMPT)
 SRVREPLY 451* Fullword 1 -> $SET SRVREPLY=ON (default OFF)
 STORCPUT 58 Fullword Current base for CPU storage integral⁴. See
 Note (1).
 STORELT 70 Fullword Current base for elapsed storage integral⁴.
 See Note (1).
 STORINDX 134 Fullword Current storage index number (See MTS Vol. 5
 Virtual Memory Management description)
 STORUSED 6 Fullword CPU storage integral to STORCPUT¹. See Note
 (1).
 STORUSEE 48 Fullword Elapsed storage integral to STORELT¹. See Note
 (1).
 SVCTRP 113* 2 Words SVCTRP exit subroutine address (1st word) and
 save area location (2nd word)
 SYMTAB 47* Fullword 1 -> $SET SYMTAB=ON (default is ON)
 SYSOLOAD 240 Fullword System overload indicators, right-justified
 with leading zeros¹¹
 S8NBR 4 8 Bytes Receipt number of job in characters, left-
 justified with trailing blanks (batch only)
 TAPEQ 294 Fullword 1 -> Tape mount queuing is enabled
 TAPEQLEN 295 Fullword Length of current tape mount queue
 TASKNBR 98 Fullword Task number
 TASKTYPE 100 Fullword Task type code⁸
 TDR 85* Fullword 1 -> $SET TDR=ON (default is OFF)
 TDRVT 81 Fullword Tape drive time for current job (seconds)
 TERMLOC 260 4 Bytes 1 -> 4-character terminal location code or
 binary zero, if unknown
 TERSE 169* Fullword 1 -> $SET TERSE=ON (default is OFF)
 TIMEFDGE 230 Dblword Value (microseconds times 4096) to be added to
 IBM time (as stored by a STCK instruction) to
 get time based on March 1, 1900
 TIMLIMIT 392* Fullword $SET TIME={n|OFF}⁵
 TOFFSET 228 Dblword Offset (microseconds times 4096) to be added to
 GMT to get local time
 TRIMBIT 181* Fullword 1 -> $SET TRIM=ON (default is ON)
 TYPEPAPR 430 Fullword Cum. phototypesetter media for task (cm²)
 TYPEPTUS 429 Fullword Cum. phototypesetter units for task
 TZONNAME 335 8 Bytes Current time zone name (characters, left-
 justified with trailing blanks)
 TZONOFST 334 Fullword Current time zone offset from GMT (minutes)
 UCBIT 17* Fullword 1 -> $SET CASE=UC (default is MC)
 UNATMODE 252 Fullword 1 -> System running in "unattended mode" (see
 also item 277)
 UNCHCELL 188 Fullword Datacell space to CELLTIME not yet charged for⁷

 262 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 UNCHDISK 186 Fullword Disk space to DISKTIME not yet charged for⁷
 USERNAME 298 Variable $SET NAME=name (from 1 to 64 characters)
 USERSIGF 387 Variable File name for user sigfile (current sign-on)
 UNITCODE 52 Fullword User unit code
 USMSG 177* Fullword 1 -> $SET USMSG=ON (default is ON)
 UXREF 191* Fullword 1 -> $SET UXREF=ON (default is OFF)
 VMICOST 417 Fullword Cum. VMI cost for task (cents*100)
 XREF 193* Fullword 1 -> $SET XREF=ON (default is OFF)

 GUINFO, CUINFO 263

 MTS 3: System Subroutine Descriptions

 April 1981

 Table of System Items Arranged by Subject ___

 Index Name Size Description _____ ____ ____ ___________

 Accounting - Batch Input and Output ___________________________________

 29 CUMREAD Fullword Cum. number of cards read for ID (excluding
 active jobs)
 31 NRREAD Fullword Number of cards read for current job
 40 NRBATCH Fullword Cum. number of batch jobs for ID (excluding
 active jobs)
 42 CUMLINES Fullword Cum. number of lines printed for ID (excluding
 active jobs)
 44 CUMPAGES Fullword Cum. number of pages printed for ID (excluding
 active jobs)
 46 CUMPUNCH Fullword Cum. number of cards punched for ID (excluding
 active jobs)
 63 NRLINES Fullword Number of lines printed for current job
 65 NRPAGES Fullword Number of pages printed for current job
 67 NRPUNCH Fullword Number of cards punched for current job
 95 SCOPIES Fullword Number of copies of printed output requested on
 $SET COPIES=n command
 128 COPIES Fullword Number of copies of printed output requested on
 $SIGNON command (batch)
 320 PAGPRLIN Fullword Current number of page printer lines
 321 PAGPRPAG Fullword Current number of page printer pages
 322 PAGPRIMG Fullword Current number of page printer images
 323 PAGPRSHT Fullword Current number of page printer sheets
 324 CUMPPL Fullword Cum. number of page printer lines
 325 CUMPPP Fullword Cum. number of page printer pages
 326 CUMPPI Fullword Cum. number of page printer images
 327 CUMPPS Fullword Cum. number of page printer sheets

 Accounting - CPU, Memory, and Paging ____________________________________

 6 STORUSED Fullword CPU storage integral to STORCPUT¹. See Note
 (1).
 8 CURRSTOR Fullword Current number of half-pages of VM storage.
 See Note (1).
 28 CUMCPUTM Fullword Cum. CPU time for ID (milliseconds) (excluding
 active jobs)
 30 CUMCORE Fullword Cum. storage integral over CPU time for ID (ex-
 cluding active jobs)²
 48 STORUSEE Fullword Elapsed storage integral to STORELT¹. See Note
 (1).
 58 STORCPUT Fullword Current base for CPU storage integral⁴. See
 Note (1).
 64 SOCPUTP Fullword Problem state CPU time used by task before cur-
 rent signon⁵
 66 SOCPUTC Fullword Supervisor state CPU time used by task before
 current signon⁵
 70 STORELT Fullword Current base for elapsed storage integral⁴.
 See Note (1).

 264 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 107 SODISKIO Fullword Number of disk operations at signon for task
 109 CUDISKIO Fullword Total number of disk operations for task
 118 CUMCOREW Fullword Cum. storage integral over wait time for this
 ID (excluding active jobs)²
 150 SODRMRDS Fullword Number of page-ins by task before signon
 170 CUDRMRDS Fullword Current number of page-ins for current job
 254 RUNTIME Fullword Amount of time used during execution of current
 program⁵. This total is updated only when exe-
 cution mode is exited, e.g., if program calls
 MTS

 Accounting - File System Storage ________________________________

 18 MAXDISK Fullword Maximum number of disk pages allowed for ID
 24 CURRDISK Fullword Number of pages of disk space in current use.
 See Note (2).
 36 NRDISKF Fullword Number of disk files existing for ID
 60 NRCREATE Fullword Number of files created during current job
 62 NRDESTRY Fullword Number of files destroyed during current job
 76 CUMDISK Fullword Cum. disk file storage integral to DISKTIME
 which has been charged for (page hours). See
 Note (2).
 112 DISKTIME Fullword Last time disk storage integral updated³
 146 SCRFDISK Fullword Number of pages of disk scratch files for cur-
 rent job. See Note (2).
 162 SCRDSKTM Fullword Last time scratch disk file storage integral
 updated³. See Note (2).
 166 SCRDSUSE Fullword Scratch disk file storage integral to
 SCRDSKTM⁷. See Note (2).
 186 UNCHDISK Fullword Disk space to DISKTIME not yet charged for⁷

 Accounting - Magnetic Tapes, Paper Tapes, and Floppy Disks __

 79 NRMOUNT Fullword Number of tape and other mounts for current job
 81 TDRVT Fullword Tape drive time for current job (seconds)
 83 PTLEN Fullword Paper tape punched for current job (inches)
 154 CUMMOUNT Fullword Cum. number of tape mounts for ID (excluding
 active jobs)
 156 CUMTDRVT Fullword Cum. tape drive time for ID (seconds) (exclud-
 ing active jobs)
 158 CUMPTLEN Fullword Cum. paper tape punched for ID (inches) (ex-
 cluding active jobs)
 252 UNATMODE Fullword 1 -> System running in "unattended mode" (see
 also item 277)
 261 PRDRMNTS Fullword Current number of paper-tape reader mounts
 262 PRDRDRVT Fullword Current paper-tape reader drive time (seconds)
 263 PPCHMNTS Fullword Current number of paper-tape punch mounts
 264 PPCHDRVT Fullword Current paper-tape punch drive time (seconds)
 265 FLPYMNTS Fullword Current number of floppy-disk mounts
 266 FLPYDRVT Fullword Current floppy-disk drive time (seconds)
 267 CUMPTRMT Fullword Cum. number of paper-tape reader mounts
 268 CUMPTRDT Fullword Cum. paper-tape reader drive time (seconds)
 269 CUMPTPMT Fullword Cum. number of paper-tape punch mounts

 GUINFO, CUINFO 265

 MTS 3: System Subroutine Descriptions

 April 1981

 270 CUMPTPDT Fullword Cum. paper-tape punch drive time (seconds)
 271 CUMFLPMT Fullword Cum. number of floppy-disk mounts
 272 CUMFLPDT Fullword Cum. floppy-disk drive time (seconds)
 277 NOMOUNTS Fullword 1 -> No tape or floppy-disk mounts allowed (see
 also item 252)
 294 TAPEQ Fullword 1 -> Tape mount queuing is enabled
 295 TAPEQLEN Fullword Length of current tape mount queue

 Accounting - Money __________________

 2 SIGNONID 4 Bytes Current signon ID
 14 ACCTNO Fullword User account requisition number
 16 PROJNO 4 Bytes Project (charge) ID in characters
 22 MAXMONY Fullword Maximum charge allowed for ID (cents*100)
 32 CUMMONY Fullword Cum. charge used for ID (cents*100) (excluding
 active jobs)
 50 IDRNBR Fullword User inter-departmental requisition number
 52 UNITCODE Fullword User unit code
 416 CPUCOST Fullword Cum. CPU cost for task (cents*100)
 417 VMICOST Fullword Cum. VMI cost for task (cents*100)

 Accounting - Phototypesetter Use ________________________________

 157 CUMPTSU Fullword Cum. phototypesetter units
 159 CUMPTSM Fullword Cum. phototypesetter media (cm²)
 429 TYPEPTUS Fullword Cum. phototypesetter units for task
 430 TYPEPAPR Fullword Cum. phototypesetter media for task (cm²)

 Accounting - Plotter Use ________________________

 25 PLOTTIME Fullword Total plot time for current job (seconds)
 108 MAXPLOT Fullword Maximum plot time allowed for ID (seconds)
 122 CUMPLOT Fullword Cum. plot time for ID (seconds) (excluding
 active jobs)
 196 MXPLOTBT Fullword 1 -> Ignore maximum plot time (item 108)
 227 PLOTPAPR Fullword Plotter paper used for current job (.01 inches)
 229 PLOTPENC Fullword Plotter pen changes for current job
 232 CUMPLPAP Fullword Cum. plotter paper used for ID (.01 inches)
 (excluding active jobs)
 234 CUMPLPEN Fullword Cum. plot pen changes for ID (excluding active
 jobs)

 Accounting - Terminal and Merit Computer Network Use __

 20 MAXTERM Fullword Maximum terminal time allowed for ID (seconds)
 26 CUMELTM Fullword Cum. terminal time for ID (seconds) (excluding
 active jobs)
 87 MNETTIME Fullword Outbound Merit time for this job (seconds)
 190 MAXMNET Fullword Maximum outbound Merit time (seconds)
 192 CUMMNET Fullword Cum. outbound Merit for this ID excluding
 active jobs (seconds)
 194 MXMNETBT Fullword 1 -> Ignore maximum MNET time (item 190)

 266 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 Accounting - User ID and Project Information __

 2 SIGNONID 4 Bytes Current signon ID
 16 PROJNO 4 Bytes Project (charge) ID in characters
 38 NRSIGS Fullword Cum. number of signons for ID (excluding active
 jobs)
 50 IDRNBR Fullword User inter-departmental requisition number
 52 UNITCODE Fullword User unit code
 54 EXPTIME Fullword ID expiration time and date³
 110 LSTRESET Fullword Last time cum. totals for this ID were reset³
 149 LSIGTMUT 18 Bytes Last signon time (Universal Time Units). See
 Note (4).
 152 LASTSOT 16 Bytes Last signon time in characters
 160 BILLCLAS Fullword Billing class (0=University 1=Industrial,
 2=Exchange)
 167* SIGFATTN Fullword 1 -> $SET SIGFILEATTN=OFF (default is ON)
 182 MAXSIG Fullword Max. number of concurrent signons allowed for
 ID (0=unlimited)
 184 CURSIG Fullword Number of times this ID currently signed on
 247* SFATTN Fullword 1 -> $SET SIGFILEATTN=OFF (default is ON)
 249 PSFATTN Fullword 1 -> Project sigfile attention bit is off
 296 PWSETBYC Fullword 1 -> Password set by Computing Center
 386 PROJSIGF Variable File name for project sigfile
 387 USERSIGF Variable File name for user sigfile (current sign-on)
 388* NEWSIGF Variable File name for user sigfile (next sign-on)
 393 PRJPWCHG Fullword 1 -> $SET PROJECTPWCHANGE=ON (default OFF)
 432 CKIDNOPW Fullword 1 -> CKID does not need to check password

 Batch Mode Jobs _______________

 4 S8NBR 8 Bytes Receipt number of job in characters, left-
 justified with trailing blanks (batch only)
 10 BATCHMD Fullword Batch (1) or conversational (0) mode
 72 SOPTOD 16 Bytes Time and date for header page for batch output
 (characters)
 89* CROUTE 4 Bytes Default batch station for punched output (char-
 acters) ($SET CROUTE=rmid)
 91* PROUTE 4 Bytes Default batch station for printed output (char-
 acters) ($SET PROUTE=rmid)
 93* PRINT 4 Bytes Print train specification ("PN ", "TN ",
 "UC ", "MC ", or binary 0 in first byte if
 ANY)
 95 SCOPIES Fullword Number of copies of printed output requested on
 $SET COPIES=n command
 104 HASPJOB Fullword 1 -> Spooled batch job
 127* PRINTER 4 Bytes $SET PRINTER={LINE|PAGE|ANY} (characters) (de-
 fault ANY)
 128 COPIES Fullword Number of copies of printed output requested on
 $SIGNON command (batch)
 129* DELIVERY 8 Bytes $SET DELIVERY={station|NONE} (characters) (de-
 fault NONE)
 179* AUTOHOLD Fullword 1 -> $SET AUTOHOLD=ON (default is OFF)

 GUINFO, CUINFO 267

 MTS 3: System Subroutine Descriptions

 April 1981

 Command Language Options ________________________

 1* LNS 4 Bytes Line-number separator character, left-justified
 with trailing blanks (default is ","; $SET
 LNS=c)
 5* FILECHAR 4 Bytes File-name character, left-justified with trail-
 ing blanks (default is "#"; $SET FILECHAR=c)
 7* SCRFCHAR 4 Bytes Scratch-file character, left-justified with
 trailing blanks (default is "-"; $SET
 SCRFCHAR=c)
 9* CONTCHAR 4 Bytes MTS command continuation character, left-
 justified with trailing blanks (default is "-";
 $SET CONTCHAR=c)
 11* ICFBIT Fullword 1 -> $SET IC=OFF (default is ON)
 17* UCBIT Fullword 1 -> $SET CASE=UC (default is MC)
 27* DUMPTYPE Fullword $SET ERRORDUMP={NOLIB|OFF|LIB} (0|1|2) (default
 NOLIB)
 35* SHFSEP 4 Bytes Shared-file separator character, left-justified
 with trailing blanks (default is ":"; $SET
 SHFSEP=c)
 37* RF Fullword Relocation factor for ALTER/DISPLAY/MODIFY com-
 mands (Default is 0; $SET RF=xxxxxx)
 39 DEVCHAR 4 Bytes Device-name character, left-justified with
 trailing blanks (default is ">"; $SET
 DEVCHAR=c)
 41* NUMBER Fullword 1 -> Automatic numbering active ($NUMBER)
 43* LIBROFF Fullword 1 -> $SET LIBR=OFF (default is ON)
 45* AFDECHO Fullword 1 -> $SET AFDECHO=ON (default is OFF)
 47* SYMTAB Fullword 1 -> $SET SYMTAB=ON (default is ON)
 49* ECHOOFF Fullword 1 -> $SET ECHO=OFF (default is ON)
 55* SIGSHORT Fullword $SIGNOFF {LONG|SHORT|$} (0|1|2) (default is
 LONG)
 57* PFXOFF Fullword 1 -> $SET PFX=OFF (default is ON)
 59* SEQCOFF Fullword 1 -> $SET SEQFCHK=OFF (default is ON)
 71* AFDNBR Fullword Next line number for *AFD* ($NUMBER)
 73* AFDINC Fullword Line-number increment for *AFD* ($NUMBER)
 77* ENDFILSW Fullword $SET ENDFILE={NEVER|SOURCE|ALWAYS} (0|1|2) (de-
 fault SOURCE)
 85* TDR Fullword 1 -> $SET TDR=ON (default is OFF)
 89* CROUTE 4 Bytes Default batch station for punched output (char-
 acters) ($SET CROUTE=rmid)
 91* PROUTE 4 Bytes Default batch station for printed output (char-
 acters) ($SET PROUTE=rmid)
 93* PRINT 4 Bytes Print train specification ("PN ", "TN ",
 "UC ", "MC ", or binary 0 in first byte if
 ANY)
 95 SCOPIES Fullword Number of copies of printed output requested on
 $SET COPIES=n command
 99* SEE_DISP Fullword 1 -> $SET DISPATCH=ON (default ON)
 119* EBM 8 Bytes The "execution begins" message--up to 7 charac-
 ters, terminated with an *
 120* ETM 8 Bytes The "execution terminated" message--up to 7
 characters, terminated with an *

 268 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 121* EXECPFX 4 Bytes Execution prefix character ($SET EXECPFX=c)
 (left-justified)
 125* PAPER 12 Bytes $SET PAPER={PLAIN|3HOLE|ANY} (characters) (de-
 fault 0 (ANY))
 128 COPIES Fullword Number of copies of printed output requested on
 $SIGNON command (batch)
 151* SIGOFRCT Fullword 1 -> Display receipt summary at signoff
 169* TERSE Fullword 1 -> $SET TERSE=ON (default is OFF)
 171* $ON Fullword 1 -> $SET $=ON (default is OFF)
 175* EDITAFD Fullword 1 -> $SET EDITAFD=ON (default is OFF)
 176 DEBUGCMD Fullword 1 -> If $DEBUG command active
 177* USMSG Fullword 1 -> $SET USMSG=ON (default is ON)
 178* DEBUG Fullword 1 -> $SET DEBUG=ON (default is OFF)
 179* AUTOHOLD Fullword 1 -> $SET AUTOHOLD=ON (default is OFF)
 181* TRIMBIT Fullword 1 -> $SET TRIM=ON (default is ON)
 185* CMDSKP Fullword 1 -> $SET CMDSKP=OFF (default is OFF)
 187* PRMAPOFF Fullword 1 -> $SET PRMAP=OFF (default is OFF)
 189* PDMAPOFF Fullword 1 -> $SET PDMAP=OFF (default is OFF)
 191* UXREF Fullword 1 -> $SET UXREF=ON (default is OFF)
 193* XREF Fullword 1 -> $SET XREF=ON (default is OFF)
 195* NO*LIB Fullword 1 -> $SET *LIBRARY=OFF (default is ON)
 197* MAPDOTS Fullword 1 -> $SET MAPDOTS=ON (default is ON)
 199* NOERRMAP Fullword 1 -> $SET ERRMAP=OFF (default is ON)
 231* SPELLCOR Fullword $SET SPELLCOR={OFF|PROMPT|ON} (0|3|1) (default
 is PROMPT)
 233* NOSDS Fullword 1 -> $SET SDSMSG=OFF (default is ON)
 237* RCPRINT Fullword $SET RCPRINT={NEVER|POS|NONNEG|ALWAYS}
 (0|1|2|3)
 251* CMDSCNBT Fullword 1 -> $SET CMDSCAN=UNAMBIGUOUS (default is
 UNAMBIGUOUS)
 293 ONSHORT Fullword 1 -> $SIGNON SHORT
 298 USERNAME Variable $SET NAME=name (from 1 to 64 characters)
 300 DFLTMBOX 16 Bytes Default mailbox (characters)
 301 NAMELIB Variable File name for $SET NAMELIB=filename
 302* INITEDIT Variable File name for $SET INITFILE(EDIT)=FDname
 303* INITSDS Variable File name for $SET INITFILE(SDS)=FDname
 304* INITCALC Variable File name for $SET INITFILE(CALC)=FDname
 305* INITTST Variable File name for $SET INITFILE(TST)=FDname
 306* INITNET Variable File name for $SET INITFILE(NET)=FDname
 307* INITSSTA Variable File name for $SET INITFILE(SSTA)=FDname
 308* INITACC Variable File name for $SET INITFILE(ACC)=FDname
 309* INITNEW Variable File name for $SET INITFILE(NEW)=FDname
 310* INITNEW2 Variable File name for $SET INITFILE(NEW2)=FDname
 311* INITNEW3 Variable File name for $SET INITFILE(NEW3)=FDname
 312* INITPMF Variable File name for $SET INITFILE(PMF)=FDname
 313* INITMESS Variable File name for $SET INITFILE(MSG)=FDname
 314* INITFMNU Variable File name for $SET INITFILE(FMNU)=FDname
 315* INITMAKE Variable File name for $SET INITFILE(MAKE)=FDname
 316* INITLIST Variable File name for $SET INITFILE(LIST)=FDname
 328 MACECHO Fullword SET MACROECHO={OFF|ON|ALL|ERROR} (0|1|2|3) (de-
 fault OFF)
 329 MACTRACE Fullword SET MACROTRACE={OFF|ON} (0|1) (default OFF)
 330 MACRO Fullword $SET MACROS={OFF|ON} (0|1|2) (default OFF)

 GUINFO, CUINFO 269

 MTS 3: System Subroutine Descriptions

 April 1981

 375* NEWFILAC Variable $SET NEWFILEACCESS={’string’|OFF} (default OFF)
 (from 0 to 255 characters)
 391* LIBSRCH Variable $SET LIBSRCH={FDname|OFF} (default OFF)
 392* TIMLIMIT Fullword $SET TIME={n|OFF}⁵
 400* ERRPRMPT Fullword 1 -> $SET ERRORPROMPT=ON (default ON)
 451* SRVREPLY Fullword 1 -> $SET SRVREPLY=ON (default OFF)

 Execution Processing ____________________

 3* PREFIXC Fullword Current prefix character, left-justified with
 trailing blanks, as set by the SETPFX sub-
 routine or CUINFO item 257 (PFXSTR).
 19* NXTSEGSW Fullword 1 -> Skip to next set of MTS command cards
 (batch only; may be set to skip unread data
 cards)
 21* PRNTCDSW Fullword 1 -> Print next input line from source if not
 MTS command (batch only)
 23* OFFBIT Fullword 1 -> Sign off when next MTS command is read
 (same as QUIT subroutine)
 27* DUMPTYPE Fullword $SET ERRORDUMP={NOLIB|OFF|LIB} (0|1|2) (default
 NOLIB)
 33* LDROPT 4 Bytes Loader options switches in leftmost byte¹⁰
 43* LIBROFF Fullword 1 -> $SET LIBR=OFF (default is ON)
 47* SYMTAB Fullword 1 -> $SET SYMTAB=ON (default is ON)
 115 RUNETIME Dblword Cumulative real time for program⁵
 119* EBM 8 Bytes The "execution begins" message--up to 7 charac-
 ters, terminated with an *
 120* ETM 8 Bytes The "execution terminated" message--up to 7
 characters, terminated with an *
 121* EXECPFX 4 Bytes Execution prefix character ($SET EXECPFX=c)
 (left-justified)
 130 LINKLEVL Fullword Current link level (see MTS Vol. 5 Virtual
 Memory Management description)
 134 STORINDX Fullword Current storage index number (See MTS Vol. 5
 Virtual Memory Management description)
 136 MXSTRIND Fullword Maximum storage index number used (See MTS Vol.
 5 Virtual Memory Management description)
 138 LODRSYMT Fullword Loader symbol table location
 176 DEBUGCMD Fullword 1 -> If $DEBUG command active
 177* USMSG Fullword 1 -> $SET USMSG=ON (default is ON)
 178* DEBUG Fullword 1 -> $SET DEBUG=ON (default is OFF)
 187* PRMAPOFF Fullword 1 -> $SET PRMAP=OFF (default is OFF)
 189* PDMAPOFF Fullword 1 -> $SET PDMAP=OFF (default is OFF)
 191* UXREF Fullword 1 -> $SET UXREF=ON (default is OFF)
 193* XREF Fullword 1 -> $SET XREF=ON (default is OFF)
 195* NO*LIB Fullword 1 -> $SET *LIBRARY=OFF (default is ON)
 197* MAPDOTS Fullword 1 -> $SET MAPDOTS=ON (default is ON)
 199* NOERRMAP Fullword 1 -> $SET ERRMAP=OFF (default is ON)
 236 PKEY 16 Bytes Program key under which calling program is
 running
 237* RCPRINT Fullword $SET RCPRINT={NEVER|POS|NONNEG|ALWAYS|NONZERO}
 (0|1|2|3|4)
 238 RUNONLY Fullword 1 -> A "run only" program is loaded (from a

 270 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 file to which the user has only RUN access)
 239 LASTEXRC Fullword Return code of last program executed
 255 PARSTRMC Variable The PAR string from the MTS $RUN command in
 mixed-case (from 0 to 255 characters)
 258 PARSTR Variable The PAR string from the MTS $RUN command con-
 verted to uppercase (from 0 to 255 characters)
 440 PKEYSTR Variable Current Pkey

 Interrupt Processing ____________________

 15* ATNBIT Fullword 1 -> Attention interrupt occurred but not taken
 (may be set to cause an attention interrupt)
 51* ATTNOFF Fullword 1 -> Stack attention interrupts (may be set to
 inhibit attention interrupts; pending interrupt
 may be taken on call to system subroutine)
 61* PGNTTRP 2 Words PGNTTRP exit subroutine address (1st word) and
 save area location (2nd word)
 69* ATTNTRP 2 Words ATTNTRP exit subroutine address (1st word) and
 save area location (2nd word)
 75* SETIOERR Fullword SETIOERR exit subroutine address
 111 ASYNCCTL Fullword Asynchronous event control switch¹³
 113* SVCTRP 2 Words SVCTRP exit subroutine address (1st word) and
 save area location (2nd word)
 167* SIGFATTN Fullword 1 -> $SET SIGFILEATTN=OFF (default is ON)
 183* EFLUEM Fullword Elementary Function Library, user error-monitor
 address
 249 PSFATTN Fullword 1 -> Project sigfile attention bit is off

 I/O File and Device Names _________________________

 5* FILECHAR 4 Bytes File-name character, left-justified with trail-
 ing blanks (default is "#"; $SET FILECHAR=c)
 7* SCRFCHAR 4 Bytes Scratch-file character, left-justified with
 trailing blanks (default is "-"; $SET
 SCRFCHAR=c)
 11* ICFBIT Fullword 1 -> $SET IC=OFF (default is ON)
 35* SHFSEP 4 Bytes Shared-file separator character, left-justified
 with trailing blanks (default is ":"; $SET
 SHFSEP=c)
 39 DEVCHAR 4 Bytes Device-name character, left-justified with
 trailing blanks (default is ">"; $SET
 DEVCHAR=c)
 59* SEQCOFF Fullword 1 -> $SET SEQFCHK=OFF (default is ON)
 75* SETIOERR Fullword SETIOERR exit subroutine address
 77* ENDFILSW Fullword $SET ENDFILE={NEVER|SOURCE|ALWAYS} (0|1|2) (de-
 fault SOURCE)
 181* TRIMBIT Fullword 1 -> $SET TRIM=ON (default is ON)
 375* NEWFILAC Variable $SET NEWFILEACCESS={’string’|OFF} (default OFF)
 (from 0 to 255 characters)

 GUINFO, CUINFO 270.1

 MTS 3: System Subroutine Descriptions

 April 1981

 System Information __________________

 228 TOFFSET Dblword Offset (microseconds times 4096) to be added to
 GMT to get local time
 230 TIMEFDGE Dblword Value (microseconds times 4096) to be added to
 IBM time (as stored by a STCK instruction) to
 get time based on March 1, 1900
 240 SYSOLOAD Fullword System overload indicators, right-justified
 with leading zeros¹¹
 252 UNATMODE Fullword 1 -> System running in "unattended mode" (see
 also item 277)
 277 NOMOUNTS Fullword 1 -> No tape or floppy-disk mounts allowed (see
 also item 252)
 294 TAPEQ Fullword 1 -> Tape mount queuing is enabled
 295 TAPEQLEN Fullword Length of current tape mount queue
 334 TZONOFST Fullword Current time zone offset from GMT (minutes)
 335 TZONNAME 8 Bytes Current time zone name (characters)
 377 MTSMODEL 5 Bytes MTS model number (characters)
 433 SERVER Fullword 1 -> The job is a server program

 Task Limits ___________

 12 LOCSW Fullword 1 -> Local time estimate active
 78 GLOBCPUT Fullword CPU time remaining in global time limit⁵. See
 Note(3).
 80 GLOBPGS Fullword Global page estimate
 82 GLOBPCH Fullword Global card estimate
 84 GLOBPTM Fullword Global plot time estimate (seconds)
 86 LOCCPUT Fullword CPU time remaining in local time limit⁵. See
 Note(3).
 88 LOCPGS Fullword Local page estimate
 90 LOCPCH Fullword Local card estimate
 92 LOCPTM Fullword Local plot time estimate (seconds)
 94 GLOBTTN Fullword Base for global time limit⁵. See Note (3).
 96 LOCTTN Fullword Base for local time limit⁵. See Note (3).
 253 LOCLIMIT Fullword Local time limit in effect⁵
 392* TIMLIMIT Fullword $SET TIME={n|OFF}⁵

 Task Status ___________

 4 S8NBR 8 Bytes Receipt number of job in characters, left-
 justified with trailing blanks (batch only)
 10 BATCHMD Fullword Batch (1) or conversational (0) mode
 13 SIGTMUT 18 Bytes Signon time (Universal Time Units). See Note
 (4).
 23* OFFBIT Fullword 1 -> Sign off when next MTS command is read
 (same as QUIT subroutine)
 55* SIGSHORT Fullword $SIGNOFF {LONG|SHORT|$} (0|1|2) (default is
 LONG)
 56 SOBCDTM 16 Bytes Signon time and date in characters
 68 SOELT Dblword Time of day at signon⁶
 98 TASKNBR Fullword Task number
 100 TASKTYPE Fullword Task type code⁸

 270.2 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 104 HASPJOB Fullword 1 -> Spooled batch job
 172 CLSID Fullword Code for CLS currently in control⁹
 174 PCLSID Fullword Code for CLS that called current CLS⁹
 180 LSS Fullword 1 -> If limited-service state active
 226 INSIGFIL Fullword 1 -> currently processing sigfile
 228 TOFFSET Dblword Offset (microseconds times 4096) to be added to
 GMT to get local time
 230 TIMEFDGE Dblword Value (microseconds times 4096) to be added to
 IBM time (as stored by a STCK instruction) to
 get time based on March 1, 1900
 241 SIGCFLD Variable The comment field from the MTS $SIGNON command,
 without the enclosing primes (from 0 to 255
 characters in length)
 242 PRIO Fullword Priority of job¹²
 334 TZONOFST Fullword Current time zone offset from GMT (minutes)
 335 TZONNAME 8 Bytes Current time zone name (characters, left-
 justified with trailing blanks)

 Terminal Information ____________________

 3* PREFIXC Fullword Current prefix character, left-justified with
 trailing blanks, as set by the SETPFX sub-
 routine or CUINFO item 257 (PFXSTR).
 10 BATCHMD Fullword Batch (1) or conversational (0) mode
 57* PFXOFF Fullword 1 -> $SET PFX=OFF (default is ON)
 74 ANSBACK 24 Bytes Answerback code (characters) (see also item
 276)
 257* PFXSTR Variable Prefix string which normally appears at the
 beginning of terminal input and output lines
 (from 0 to 120 characters in length)
 259 EXPRESS Fullword 1 -> User is at an express terminal
 260 TERMLOC 4 Bytes 1 -> 4-character terminal location code or
 binary zero, if unknown
 276 ANSBACKL Variable Answerback code (characters) (see also item 74)
 418 HOSTNAME 8 Bytes Host name (characters)

 GUINFO, CUINFO 270.3

 MTS 3: System Subroutine Descriptions

 April 1981

 ────────────────────
 ¹Half-pages*(1/300) seconds
 ²Page-seconds
 ³Minutes since Midnight, March 1, 1900
 ⁴Units of 1/300 second
 ⁵Timer units: 13 1/48 microseconds per unit
 ⁶Microseconds since Midnight, March 1, 1900
 ⁷Page-minutes
 ⁸Job type codes:
 0=Terminal
 1=Local batch (without batch monitor)
 2=Remote batch (without batch monitor)
 3=Normal batch (with batch monitor)
 4=*-File
 5=OPER
 ⁹CLS codes:
 0=MTS (MTS command mode)
 1=USER (execution mode)
 2=EDIT (edit mode)
 3=SDS (debug mode)
 4=CALC (calc mode)
 5=TST (test CLS)
 6=NET ($NET command)
 7=MNT ($MOUNT command)
 8=PRMT ($PERMIT command)
 9=FSTA ($FILESTATUS command)
 10=SSTA (systemstatus mode)
 11=ACC (accounting mode)
 12=NEW (new CLS)
 13=NEW2 (new CLS)
 14=NEW3 (new CLS)
 15=LOG ($LOG command)
 16=PMF (program maintenance facility - under development)
 17=MESS ($MESSAGESYSTEM command)
 18=INFO ($INFO command - privileged)
 19=LIST ($LIST command)
 20=COPY ($COPY command)
 21=DEST ($DESTROY command)
 22=DUPL ($DUPLICATE command)
 23=EMPT ($EMPTY command)
 24=RENA ($RENAME command)
 25=TRUN ($TRUNCATE command)
 26=CREA ($CREATE command)
 27=DISP ($DISPLAY command)
 28=SET ($SET command)
 29=FMNU ($FILEMENU command)
 30=MAKE ($MAKE command)
 ¹⁰Loader options (one byte)
 X’80’ 1 -> Suppress pseudo-registers in map
 X’40’ 1 -> Suppress predefined symbols in map
 X’20’ 1 -> Print undefined symbols
 X’10’ 1 -> Print undefined xrefs
 X’08’ 1 -> Print all xrefs

 270.4 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 X’04’ 1 -> Print dotted lines
 X’02’ 1 -> Print map lines and entry point
 X’01’ 1 -> Print nonfatal errors
 ¹¹System overload indicators (one byte)
 X’80’ 1 -> Processor
 X’40’ 1 -> Paging
 X’20’ 1 -> Disk I/O
 X’10’ 1 -> I/O activity
 X’08’ 1 -> Drum space
 ¹²Priority of job (one byte)
 0=Low
 1=Normal
 2=High (currently not used)
 3=Deferred
 4=Minimum
 ¹³Asynchronous event control
 Bit 31: 1 -> Stack attention interrupts
 30: 1 -> Stack attention interrupts unless ATTNTRP exit
 is enabled
 29: 1 -> Stack timer interrupts

 Notes:

 (1) The elapsed time virtual memory integral for this job is

 STORUSEE+CURRSTOR*(time(2)*.3-STORELT)

 and the CPU virtual memory integral for this job is

 STORUSED+CURRSTOR*(time(1)*.3-STORCPUT)

 where time(n) is the result of calling the TIME subroutine with
 key=n assuming no call has been made with key=0.

 (2) The permanent disk and datacell space integrals for this ID are

 60*CUMDISK+CURRDISK*(min-DISKTIME)

 and

 60*CUMCELL+CURRCELL*(min-CELLTIME)

 and the scratch disk and datacell space integrals for this
 terminal session or batch job are

 SCRDSUSE+SCRFDISK*(min-SCRDSKTM)

 and

 SCRCLUSE+SCRFCELL*(min-SCRCELTM)

 GUINFO, CUINFO 270.5

 MTS 3: System Subroutine Descriptions

 April 1981

 where "min" is minutes since March 1, 1900 which is obtainable
 from the TIME and GRJLTM subroutines; the results are in
 page-minutes.

 (3) GLOBTTN (or LOCTTN) is the base used for establishing the global
 (or local) time limit and is the total amount of CPU time used
 by the task up to that time. When the timer interrupt enforcing
 the global (or local) time limit is scheduled, GLOBCPUT (or
 LOCCPUT) is set to the CPU time available to the task before the
 interrupt will be triggered. GLOBCPUT and GLOBTTN (or LOCCPUT
 and LOCTTN) may be added to yield the CPU time point when the
 interrupt will occur. To obtain the time remaining in the
 global (or local) time limit, the current CPU time used by the
 task should be subtracted from the above sum. The current task
 CPU time may be obtained by using the TIME subroutine with
 key=9.

 (4) The Universal (GMT) time is returned in the following format:

 Bytes 0-7: Universal time as Julian microseconds since March
 1, 1900.
 Bytes 8-9: Time zone offset from Universal time (minutes).
 Bytes 10-17: Time zone name (8 characters, left-justified with
 trailing blanks, e.g., "EST ").

 270.6 GUINFO, CUINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 GUINFUPD ________

 Subroutine Description

 Purpose: To update certain items obtainable via the GUINFO
 subroutine.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL GUINFUPD

 Return Codes:

 0 Successful return.
 4 Illegal signon ID.
 8 Error return.

 Description: The following items obtainable via the GUINFO subroutine
 are updated to the time of the call, excluding currently
 active jobs for this signon ID (including this job).

 14 ACCTNO 36 NRDISKF
 18 MAXDISK 38 NRSIGS
 20 MAXTERM 40 NRBATCH
 22 MAXMONY 42 CUMLINES
 24 CURRDISK 44 CUMPAGES
 26 CUMELTM 46 CUMPUNCH
 28 CUMCPUTM 50 IDRNBR
 29 CUMREAD 52 UNITCODE
 30 CUMCORE 54 EXPTIME
 32 CUMMONY 76 CUMDISK

 106 MAXCELL 157 CUMPTSU
 108 MAXPLOT 158 CUMPTLEN
 110 LSTRESET 159 CUMPTSM
 112 DISKTIME 160 BILLCLAS
 114 CELLTIME 182 MAXSIG
 116 CURRCELL 184 CURSIG
 118 CUMCOREW 186 UNCHDISK
 122 CUMPLOT 188 UNCHCELL
 124 NRCELLF 190 MAXMNET
 126 CUMCELL 192 CUMMNET
 154 CUMMOUNT 194 MXMNETBT
 156 CUMTDRVT 196 MXPLOTBT

 GUINFUPD 271

 MTS 3: System Subroutine Descriptions

 April 1981

 232 CUMPLPAP 268 CUMPTRDT
 234 CUMPLPEN 269 CUMPTPMT
 246 ACCPRIV 270 CUMPTPDT
 248 ACCCCPF 271 CUMLPMT
 249 PSFATTN 272 CUMLPDT
 250 ACCPUSE 296 PWSETBYC
 267 CUMPTRMT

 324 CUMPPL 327 CUMPPS
 325 CUMPPP 393 PRJPWCHG
 326 CUMPPI

 272 GUINFUPD

 MTS 3: System Subroutine Descriptions

 April 1981

 GUSER _____

 Subroutine Description

 Purpose: To read an input record from the logical I/O unit GUSER.

 Location: Resident System

 Alt. Entry: GUSER#

 Calling Sequences:

 Assembly: CALL GUSER,(reg,len,mod,lnum)

 FORTRAN: CALL GUSER(reg,len,mod,lnum,&rc4,...)

 Parameters:

 reg is the location of the virtual memory region to ___
 which data is to be transmitted.
 len is the location of a halfword (INTEGER*2) inte- ___
 ger in which will be placed the number of bytes _____
 read.
 mod is the location of a fullword of modifier bits ___
 used to control the action of the subroutine.
 If mod is zero, no modifier bits are specified. ___
 See the "I/O Modifiers" description in this
 volume.
 lnum is the location of a fullword integer giving the ____
 internal representation of the line number that
 is to be read or has been read by the sub-
 routine. The internal form of the line number
 is the external form times 1000, e.g., the
 internal form of line 1 is 1000, and the
 internal form of line .001 is 1.
 rc4,... is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 Return Codes:

 0 Successful return.
 4 End-of-file.
 >4 See the "I/O Subroutine Return Codes" description
 in this volume.

 Description: All four of the above parameters in the calling sequence
 are required. The subroutine reads a record into the
 region specified by reg and puts the length of record (in ___
 bytes) into the location specified by len. If the mod ___ ___

 GUSER 273

 MTS 3: System Subroutine Descriptions

 April 1981

 parameter (or the FDname modifier) specifies the INDEXED
 bit, the lnum parameter must specify the line number to be ____
 read. Otherwise, the subroutine will put the line number
 of the record read into the location specified by lnum. ____

 If the @MAXLEN FDname I/O modifier is specified, the len ___
 parameter is three halfwords which give the number of
 bytes actually read, the maximum number of bytes to be
 read, and the physical length of the record read. See the
 description of the @MAXLEN FDname I/O modifier in the
 section "I/O Modifiers" in this volume.

 The default FDname for GUSER is *MSOURCE*.

 Note that the contents of the input area reg may be ___
 changed even if the subroutine gives a nonzero return
 code.

 There is a macro GUSER in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for GUSER in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Examples: This example given in assembly language and FORTRAN calls
 GUSER specifying an input region of 20 fullwords. No
 modifier specification is made on the subroutine call.

 Assembly: CALL GUSER,(REG,LEN,MOD,LNUM)
 .
 .
 REG DS CL80
 LEN DS H
 MOD DC F’0’
 LNUM DS F

 or

 GUSER REG,LEN Subr. call using macro

 FORTRAN: INTEGER*2 LEN
 INTEGER REG(20),LNUM
 ...
 CALL GUSER(REG,LEN,0,LNUM,&30)
 ...
 30 ...

 274 GUSER

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 GUSERID _______

 Subroutine Description

 Purpose: To obtain the current 4-character signon ID.

 Location: Resident System

| Alt. Entry: GETID, GUSERIDS, GUSIDS

 Calling Sequences:

 Assembly: CALL GUSERID

| CALL GUSERIDS,(ccid),VL
|
| FORTRAN: CALL GUSIDS(ccid,&rc4)

 A GR13 save area is not required for a call to this
 subroutine.

| Parameters:
|
| ccid is a region to store the 4-character signon ID. ____

 Values Returned:

 GR1 contains the 4-character signon ID.

| Return Codes:
|
| 0 Successful return.
| 4 Invalid parameter or no VL bit specified.
|
| Description: A call on the GUSERIDS or GUSIDS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the GUSERID subroutine.
|
| Example: FORTRAN: CALL GUSIDS(ID,&100)

 The above example returns the signon ID.

 GUSERID 275

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 276 GUSERID

 MTS 3: System Subroutine Descriptions

 April 1981

 IBSCH _____

 Subroutine Description

 Purpose: To perform a numeric or character binary search on an
 ordered FORTRAN array.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: rslt = IBSCH(array,nelm,nrec,indx1,indx2,indx3,
 type,order,key)

 Parameters:

 array is the array containing the data to be _____
 searched.
 nelm is the number of numeric elements (all of the ____
 same type as key) composing each record (nelm ___ ____
 is positive), or is the number of characters
 composing each record (nelm is negative and ____
 each record is |nelm| characters long).
 nrec is the number of records in the entire array. ____
 If array is unidimensional, it must be dimen- _____
 sioned nelm*nrec; if it is two-dimensional, ____ ____
 it must be dimensioned (nelm,nrec). ____ ____
 indx1 is the index in array of the first record to _____ _____
 be searched.
 indx2 is the index in array of the last record to _____ _____
 be searched.
 indx3 is the index of the numeric element within _____
 each record that is the search key (indx3 is _____
 positive), or is the index of character
 within each record that is the search key
 (indx3 is negative and specifies the _____
 |indx3|’th character).
 type specifies the type of type, as follows: ____ ____

 type type of key ____ ___________

 -n Character
 0 INTEGER*2
 1 INTEGER*4
 2 Fullword character
 3 REAL*4
 4 REAL*8

 For character searches, the search key is |n|
 characters long (1≤|n|≤256).

 IBSCH 276.1

 MTS 3: System Subroutine Descriptions

 April 1981

 order specifies the order in which the data is _____
 sorted, as follows:

 order order of data _____ _____________

 ≥0 ascending
 <0 descending

 key is the key value for which the keys in array ___ _____
 are to be searched.

 Value Returned:

 rslt is the the functional result of IBSCH to be ____
 interpreted as follows:

 rslt meaning ____ _______

 -1 invalid parameters
 0 key was not found ___
 1,2,.. record number in array in which _____
 key was found ___

 Note: The parameters nelm, nrec, indx1, indx2, indx3, ____ ____ _____ _____ _____
 type, and order must be INTEGER*4. ____ _____

 Description: The IBSCH subroutine performs a numeric or character
 binary search on a FORTRAN array subject to the following
 constraints:

 (1) All records must of equal length and each must be
 in one piece (not scattered through the array).
 (2) The search will be performed on either all of or
 part of the array, in ascending or descending
 order, using a numeric or a character key. The
 records must have been previously sorted (or else
 a meaningless result will occur).
 (3) A character-key search will use the standard
 EBCDIC collating sequence to locate the given key.
 (4) The search key will be either all of or part of a
 record. If part of a record, the key must be in
 the same part of every record. Character keys of
 1 to 256 characters and several kinds of numeric
 keys are recognized.
 (5) Only one key field can be searched, for one key
 value, on each call to IBSCH.

 IBSCH may be used with the output from the SORT2 sub-
 routine, which means that unordered data may be readily
 searched by first sorting it on a given key using SORT2,
 then performing a binary search with that key value on the
 ordered data using IBSCH.

 276.2 IBSCH

 MTS 3: System Subroutine Descriptions

 April 1981

 As stated above, the records to be searched must be in one
 piece. If the array in unidimensional, these records are
 simply stored sequentially from the first record to the
 last. If the array is two-dimensional, a FORTRAN program
 stores the array elements sequentially in column order.
 This means that the records to be searched must be
 arranged in the array as one record per column, with all
 the keys for a given key field starting in the same row.

 For character searches, it must be noted that a character
 occupies one byte of storage, but FORTRAN arrays are
 dimensioned in terms of elements, not bytes. The follow-
 ing table gives the number of bytes per element for the
 FORTRAN data types likely to be used in searching.

 FORTRAN Bytes per
 type element ____ _______

 LOGICAL*1 1
 INTEGER*2 2
 LOGICAL*4 4
 INTEGER*4 4
 REAL*4 4
 REAL*8 8

 Where the key consists of four characters occupying one
 fullword of storage (e.g., one REAL*4 array element), a
 character search can be made up to one-fifth more effi-
 cient by using a numeric search with type having the value ____
 2 to signify a fullword character key.

 Example: FORTRAN: REAL*4 R(500)
 KEY=1562.33
 IRSLT=IBSCH(R,1,500,1,500,1,3,1,KEY)

 The above example searches an entire array of 500 single-
 precision floating-point numbers, sorted in ascending
 order, for the value contained in the variable KEY (in
 this case, 1562.33).

 FORTRAN: REAL*4 NAME(2,6),KEY(2)
 DATA NAME/’ANDE’,’RSON’,
 + ’BROW’,’N ’,
 + ’HOLL’,’INGS’,
 + ’JASP’,’ER ’,
 + ’ROWA’,’LING’,
 + ’SCHM’,’IDT ’/
 DATA KEY/’JASP’,’ER ’/
 IRSLT=IBSCH(NAME,2,6,1,6,1,2,1,KEY(1))

 The above example searches a REAL*4 character array,
 sorted in ascending order, for the name "JASPER". IRSLT
 is 4 in this case. A numeric-style search is used.

 IBSCH 276.3

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: LOGICAL*1 NAME(8,6),KEY(8)
 DATA NAME/’A’,’N’,’D’,’E’,’R’,’S’,’O’,’N’,
 + ’B’,’R’,’O’,’W’,’N’,’ ’,’ ’,’ ’,
 + ’H’,’O’,’L’,’L’,’I’,’N’,’G’,’S’,
 + ’J’,’A’,’S’,’P’,’E’,’R’,’ ’,’ ’,
 + ’R’,’O’,’W’,’A’,’L’,’I’,’N’,’G’,
 + ’S’,’C’,’H’,’M’,’I’,’D’,’T’,’ ’/
 DATA KEY/’J’,’A’,’S’,’P’,’E’,’R’,’ ’,’ ’/
 IRSLT=IBSCH(NAME,-8,6,1,6,-1,-8,1,KEY(1))

 The above example searches a LOGICAL*1 character array,
 sorted in ascending order, for the name "JASPER". IRSLT
 is 4 in this case. A character-key search is used.

 276.4 IBSCH

 MTS 3: System Subroutine Descriptions

 April 1981

 IOH ___

 Subroutine Description

 Purpose: IOH is an input/output conversion package that provides
 format-directed input and output for 360/370-assembler
 language programs and programs using the Plot Description
 System.

 Location: *LIBRARY

 Entry Points: IOH has the following entry points:

 ROPEN, RCLOSE, POPEN, PCLOSE, PCOPEN, PCCLOSE, SERO-
 PEN, SERCLOSE, GOPEN, GCLOSE, LOPEN, LCLOSE, SETFR-
 VAR, SETIOHER, DROPIOER, GETIOHER, OWNCONVR, ACCEPT,
 and IOPMOD.

 Description: For the complete description of IOH and its calling
 sequences, see the section "IOH" in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 IOH 277

 MTS 3: System Subroutine Descriptions

 April 1981

 278 IOH

 MTS 3: System Subroutine Descriptions

 April 1981

 JLGRDT, JLGRTM ______________

 Subroutine Description

 Purpose: S-type (e.g., FORTRAN and PL/I) interfaces for JULGRGDT
 and JULGRGTM.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL JLGRDT(juldat,grgdat)

 REAL*8 JLGRDT
 date=JLGRDT(juldat,grgdat)

 CALL JLGRTM(jultim,grgtim)

 COMPLEX*16 JLGRTM
 time=JLGRTM(jultim,grgtim)

 PL/I(F): CALL PLCALL(JLGRDT,f2,PL1ADR(juldat),grgdat);

 DCL PLCALLD RETURNS(FLOAT(16));
 date=PLCALLD(JLGRDT,f2,PL1ADR(juldat),grgdat);

 CALL PLCALL(JLGRTM,f2,PL1ADR(jultim),grgtim);

 Parameters:

 juldat is a fullword (INTEGER*4 or FIXED BINARY(31)) ______
 containing the integer number of days start-
 ing with March 1, 1900 as "1".
 grgdat is 8 bytes (REAL*8 or CHARACTER(8)) into ______
 which the Gregorian date in the character
 form "MM/DD/YY" is placed on return.
 jultim is a fullword (INTEGER*4 or FIXED BINARY(31)) ______
 containing the integer number of minutes
 starting with March 1, 1900, at 00:01 as "1".
 grgtim is 16 bytes (REAL*8(2) or CHARACTER(16)) into ______
 which the Gregorian date and time in the
 character form "MM/DD/YYhh:mm:00" is placed
 on return.
 f2 is a fullword (FIXED BINARY(31)) containing __
 the integer 2.

 Values Returned:

 FR0 contains the Gregorian date in the character form
 "MM/DD/YY" for call on JLGRDT. This is assigned to

 JLGRDT, JLGRTM 279

 MTS 3: System Subroutine Descriptions

 April 1981

 date for FORTRAN and PL/I programs using the ____
 function-call format.

 FR0 and FR2 contain the Gregorian date and time in
 the character form "MM/DD/YYhh:mm:00" for calls on
 JLGRTM. This is assigned to time for FORTRAN and ____
 PL/I programs using the function-call format.

 Description: The Julian date or time is passed to JULGRGDT or JULGRGTM,
 respectively, and is converted to the corresponding Gre-
 gorian date or time in character form. The results are
 undefined for dates and times which are nonpositive or
 greater than 12/31/99.

 Examples: FORTRAN: REAL*8 DATE
 CALL JLGRDT(25915,DATE)

 REAL*8 DATE,JLGRDT,DUMMY
 DATE=JLGRDT(25915,DUMMY)

 The above two examples call JLGRDT to convert the Julian
 date 25915 into the corresponding Gregorian date February
 11, 1971.

 REAL JULIAN*4 TIME*8(2)
 CALL JLGRTM(JULIAN,TIME)

 The above example calls JLGRTM to convert the Julian date
 and time in the variable JULIAN into the corresponding
 Gregorian date and time.

 PL/I(F): CALL PLCALL(JLGRDT,F2,PL1ADR(JULIAN),DATE);
 DECLARE JLGRDT ENTRY,
 F2 FIXED BINARY(31) INITIAL(2),
 JULIAN FIXED BINARY(31) INITIAL(25915),
 DATE CHARACTER(8);

 UNSPEC(DATE)=UNSPEC(PLCALLD(JLGRDT,F2,
 PL1ADR(JULIAN),DUMMY));
 DECLARE (DATE, DUMMY) CHARACTER(8),
 PLCALLD RETURNS(FLOAT(16)),
 JLGRDT ENTRY,
 F2 FIXED BINARY(31) INITIAL(2),
 JULIAN FIXED BINARY(31) INITIAL(25915);

 The above two examples call JLGRDT to convert the Julian
 date 25915 into the corresponding Gregorian date February
 11, 1971.

 CALL PLCALL(JLGRTM,F2,PL1ADR(JULIAN),TIME);
 DECLARE JLGRTM ENTRY, TIME CHARACTER(16),
 F2 FIXED BINARY(31) INITIAL(2),
 JULIAN FIXED BINARY(31);

 280 JLGRDT, JLGRTM

 MTS 3: System Subroutine Descriptions

 April 1981

 The above example calls JLGRTM to convert the Julian date
 and time in the variable JULIAN into the corresponding
 Gregorian date and time.

 JLGRDT, JLGRTM 281

 MTS 3: System Subroutine Descriptions

 April 1981

 282 JLGRDT, JLGRTM

 MTS 3: System Subroutine Descriptions

 April 1981

 JMSGTD, JTUGTD ______________

 Subroutine Description

 Purpose: S-type (e.g., FORTRAN and PL/I) interface for JMSGTDR and
 JTUGTDR.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL JMSGTD(jms,grgtim)

 CALL JTUGTD(jtu,grgtim)

 PL/I(F): CALL PLCALL(JMSGTD,f2,jms,grgtim);

 CALL PLCALL(JTUGTD,f2,jtu,grgtim);

 Parameters:

 jms is an 8-byte integer (INTEGER*4(2) or BIT(___
 64)) containing the integer number of micro-
 seconds starting with March 1, 1900.
 jtu is an 8-byte integer (INTEGER*4(2) or BIT(___
 64)) containing the integer number of timer
 units starting with March 1, 1900. A timer
 unit is 1/256 of 1/300 of a second (13 1/48
 microseconds).
 grgtim is 16 bytes (REAL*8(2) or CHARACTER(16)) into ______
 which the Gregorian time and date in the
 character form "hh:mm.ssMM-DD-YY" is placed
 on return.
 f2 is a fullword (FIXED BINARY(31)) containing __
 the integer 2.

 Description: The Julian time in microseconds or timer units is passed
 to JMSGTDR or JTUGTDR, respectively, and is converted to
 the corresponding Gregorian date and time in character
 form. The results are undefined for dates and times which
 are nonpositive or greater than 12/31/99.

 Examples: FORTRAN: INTEGER*4 JULIAN(2)
 DATA JULIAN/Z000830D1,Z7477784F/
 REAL*8 TIME(2)
 ...
 CALL JMSGTD(JULIAN,TIME)

 JMSGTD, JTUGTD 283

 MTS 3: System Subroutine Descriptions

 April 1981

 PL/I(F): DECLARE JMSGTD ENTRY,
 F2 FIXED BINARY(31) INITIAL (2),
 TIME CHARACTER (16),
 JULIAN BIT(64) INITIAL
 (’00000000000010000011000011010001011101000
 11101110111100001001111’B);
 CALL PLCALL(JMSGTD,F2,JULIAN,TIME);

 The above two examples call JMSGTD to convert the Julian
 time into the corresponding Gregorian time and date
 17:59.33, March 21, 1973.

 284 JMSGTD, JTUGTD

 MTS 3: System Subroutine Descriptions

 April 1981

 JMSGTDR, JTUGTDR ________________

 Subroutine Description

 Purpose: To convert the Julian time in microseconds or timer units
 since March 1, 1900 to the corresponding Gregorian time
 and date hh:mm.ssMM/DD/YY.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: LM 0,1,julms
 CALL JMSGTDR

 LM 0,1,jultu
 CALL JTUGTDR

 Parameters:

 julms is two fullwords containing the 8-byte inte- _____
 ger number of microseconds through the given
 date starting with March 1, 1900.
 jultu is two fullwords containing the 8-byte inte- _____
 ger number of timer units starting with March
 1, 1900. A timer unit is 1/256 of 1/300 of a
 second (13 1/48 microseconds).

 Value Returned:

 GR0 through GR3 contain the Gregorian time and date
 in the character form "hh:mm.ssMM-DD-YY".

 Description: The results are undefined for dates which are nonpositive
 or greater than 12/31/99.

 See JMSGTD, JTUGTD for S-type (e.g., FORTRAN and PL/I)
 interfaces.

 Example: Assembly: LM 0,1,JULMS
 CALL JMSGTDR
 STM 0,3,GREG
 .
 .
 JULMS DC X’000830D17477784F’
 GREG DS CL16

 The above example calls JMSGTDR to convert the Julian time
 in location JULMS to the corresponding Gregorian time and
 date 17:59.33, March 21, 1973.

 JMSGTDR, JTUGTDR 285

 MTS 3: System Subroutine Descriptions

 April 1981

 286 JMSGTDR, JTUGTDR

 MTS 3: System Subroutine Descriptions

 April 1981

 JULGRGDT, JULGRGTM, JLGRSEC ___________________________

 Subroutine Description

 Purpose: To convert the Julian date or time (based on March 1,
 1900) to the corresponding Gregorian date (MM/DD/YY) or
 time (MM/DD/YYhh:mm:ss).

 Location: Resident System

 Calling Sequences:

 Assembly: L 1,juldat
 CALL JULGRGDT

 L 1,jultim
 CALL JULGRGTM

 L 1,julsec
 CALL JLGRSEC

 Parameters:

 juldat is a fullword containing the integer number ______
 of days starting with March 1, 1900 as "1".
 jultim is a fullword containing the integer number ______
 of minutes starting with March 1, 1900, at
 00:01 as "1".
 julsec is a fullword containing the integer number ______
 of seconds starting with March 1, 1900, at
 00:00:01 as "1".

 Values Returned:

 GR0 and GR1 contain the Gregorian date in the
 character form "MM/DD/YY" for calls on JULGRGDT.

 GR0 through GR3 contain the Gregorian date and time
 in the character form "MM/DD/YYhh:mm:00" for calls on
 JULGRGTM.

 GR0 through GR3 contain the Gregorian date and time
 in the character form "MM/DD/YYhh:mm:ss" for calls on
 JLGRSEC.

 Description: The results are undefined for dates which are nonpositive
 or greater than 12/31/99. For JLGRSEC, times greater than
 03/19/68 03:14:07 require all 32 bits of the parameter in
 GR1.

 JULGRGDT, JULGRGTM, JLGRSEC 287

 MTS 3: System Subroutine Descriptions

 April 1981

 See JLGRDT, JLGRTM for S-type (e.g., FORTRAN and PL/I)
 interfaces.

 Examples: Assembly: L 1,JLDAT
 CALL JULGRGDT
 STM 0,1,GRDAT
 .
 .
 JLDAT DC F’25915’
 GRDAT DS CL8

 The above example calls JULGRGDT to convert the Julian
 date 25915 into the corresponding Gregorian date February
 11, 1971.

 L 1,JLTIM
 CALL JULGRGTM
 STM 0,3,GRTIM
 .
 .
 JLTIM DC F’37438110’
 GRTIM DS CL16

 The above example calls JULGRGTM to convert the Julian
 date and time 37438110 into its corresponding Gregorian
 date and time May 6, 1971, 16:30:17.

 288 JULGRGDT, JULGRGTM, JLGRSEC

 MTS 3: System Subroutine Descriptions

 April 1981

 KWSCAN ______

 Subroutine Description

 Purpose: To perform keyword processing on a character string.
 Keyword processing entails searching a character string
 for certain specified character strings of the form
 "keyword=value" (or the degenerate forms, "keyword" and
 "value") and performing an associated program action when
 a specified keyword string is found.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL KWSCAN,(len,lht,ext,text,rht,ltext,sws,
 rvec,dlist,slist,sinfo)

 Parameters:

 len is the location of the halfword length of the ___
 table of valid keyword left-hand sides indi-
 cated by lht. ___
 lht is the location of the table of valid keyword ___
 left-hand sides (see "Description" below for
 the form of its entries).
 ext is the location of the execute table, a set ___
 of instructions selectively executed depend-
 ing on the keyword that was found in the
 input string (see "Description" below for a
 discussion of its form and use).
 text is the location of the character string to be ____
 processed for keywords.
 rht is the location of the table of valid keyword ___
 right-hand sides (see "Description" below for
 the types and forms of its entries).
 ltext is the location of the halfword length of the _____
 string referenced by text. ____
 sws is the location of a fullword of bit flags ___
 that define the behavior of the keyword
 scanner. See "Subroutine Options" below for
 details.
 rvec is the location of a 27-word return vector, ____
 or zero. It is optionally used to return
 error information from the subroutine. If
 rvec is zero, no error information is return- ____
 ed. See "Subroutine Options" below for the
 form of and control over the information
 returned.
 dlist is the location of an optional set specifying _____

 KWSCAN 289

 MTS 3: System Subroutine Descriptions

 April 1981

 the characters to be considered as keyword
 expression delimiters. See "Subroutine Op-
 tions" below for the specification of the
 set.
 slist is the location of an optional set of charac- _____
 ter strings to be considered as separators of
 keyword expression left- and right-hand
 sides. See "Subroutine Options" below for
 the specification of the set.
 sinfo is the location of an optional summary infor- _____
 mation buffer. See bit 13 of the sws ___
 parameter.

 Return Codes:

 0 Keywords successfully processed.
 4 "CANCEL" response given in reply to prompt for
 replacement of incorrect input, or other error in
 keyword processing.

 Description: The KWSCAN subroutine scans the given character string for
 valid keyword expressions as defined by the subroutine
 parameters. When a valid keyword expression is found, the
 calling program is given the "value", if any, of the
 expression, and the opportunity to perform processing
 pertinent to the keyword function.

 Conceptually, every keyword expression has a left-hand
 side and a right-hand side, the left-hand side constitut-
 ing the keyword portion of the expression, and the
 right-hand side defining the expression’s "value". Physi-
 cally, either, but not both, of these may be absent along
 with the associative character "=", yielding three possi-
 ble keyword expression forms: "LHSide=RHSide", "LHSide",
 and "RHSide".

 The left-hand side keyword and right-hand side values to
 be recognized in the input string are specified in the
 tables indicated by lht and rht. Whereas keyword right- ___ ___
 hand sides can be any of a fixed number of different
 types, ranging from arbitrary strings to decimal numbers,
 left-hand sides, being keywords, can only be given charac-
 ter strings. The text of the left-hand sides, and their
 associations with right-hand sides, are specified in the
 left-hand table, pointed to by lht. The forms of the ___
 right-hand sides are specified in the right-hand table,
 indicated by rht. ___

 Keyword expressions are scanned for as follows. The input
 string is searched from left to right for a substring
 bounded at the right and left extents by delimiter
 characters (the beginning and the end of a string are also
 considered delimiters). The substring text, up to the

 290 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 embedded "=" (or the entire substring if no "=" is
 present), is then compared to left-hand side text entries
 in the left-hand table. If no left-hand side match is
 found there, the substring is not considered a valid
 keyword expression and an error return is made. If an
 entry is found to match, the right-hand table is scanned
 beginning at a displacement specified in the left-hand
 table entry that matched the keyword expression’s left-
 hand side. The text to the right of the "=" in the
 substring under consideration, the right-hand side, is
 then checked to see if it matches the right-hand side
 forms given by successive right-hand table entries. If it
 is of one of the given forms, the substring is considered
 a valid keyword expression, and a match takes place.
 Otherwise, the expression is not valid.

 When a keyword expression is matched, the general regis-
 ters are set up to contain information pertaining to the
 keyword expression (such as the keyword right-hand value).
 A single instruction in the table of instructions indicat-
 ed by ext, specified by the sum of two displacements ___
 contained in the matching left- and right-hand table
 entries, is performed by an EX instruction. The calling
 program can thus perform an action associated with the
 given keyword, such as saving the value of the right-hand
 side. If more than one instruction is needed for the
 action, the subject of the EX instruction should be a BAL
 or BALR instruction to a pertinent internal subroutine. A
 return from this subroutine should be eventually made. If
 the return is made to the instruction specified by the
 contents of the link register, keyword processing will
 proceed normally (according to the options defined in the
 fullword indicated by sws). If a return is made to two ___
 bytes past the link register contents, the match to the
 keyword expression is rejected, and a scan for an alter-
 nate right-hand side match resumes after the right-hand
 table entry which matched previously. If the return is to
 16 bytes past the contents of the link register, all
 keyword processing is aborted immediately and a return
 code of 4 is issued by the KWSCAN subroutine.

 If text appears in the input string that does not match
 any of the defined keywords, various actions may be taken,
 depending on the subroutine options. One option is to
 generate an error message on *MSINK*, followed by a
 prompt, if the subroutine is not being used in batch mode,
 for corrective input from *MSOURCE*. If this option is
 selected, the prompted input does not replace or modify
 the contents of the original string in error, but is
 processed separately. Other options include spelling
 correction of the invalid text. See the section "Sub-
 routine Options" below.

 KWSCAN 291

 MTS 3: System Subroutine Descriptions

 April 1981

 When the keyword input string contents are exhausted, or
 the keyword scan otherwise terminates, the subroutine
 returns with the return code set.

 Format of Left-Hand Table Entries:

 Left-hand table entries defining the keyword left-hand
 sides are variable-length entries. The format is:

 1 or 2 bytes¹ - right-hand table index. This is the dis-
 placement into the right-hand table where
 the associated right-hand side entries for
 this left-hand side can be found.
 1 or 2 bytes¹ - execute-table index. This is the partial
 displacement into the execute table where
 an instruction associated with a match to
 this left-hand side is located.
 1 byte² - (optional) control code.
 n bytes² - (optional) control code operands.
 1 byte - count of number of characters in the
 left-hand side.
 N characters - the text of the left-hand side keyword.

 ¹The right-hand table index and execute-table index values
 are two bytes in length if bit 27 of the sws parameter is ___
 one. The number of characters which compose the left-
 hand side text may be zero, implying a null left-hand
 side (i.e., the degenerate form "RHSide").

 ²The left-hand table may contain optional left-hand table
 control codes followed by control-code operands (if
 applicable). Multiple control codes may be used in
 left-hand side entries. The control codes are distin-
 guished from the following keyword text-length field by
 the initial bit being set to 1.

 Control Code Description _______ ____ ___________

 hex FE Suppress spelling correction for the left-
 hand side entry.
 hex FD Explicit minimum initial substring length
 specified. The length is given in the byte
 following this control code. This control
 is effective even if bit 23 of the sws ___
 parameter is zero.

 Right-Hand Side Type Codes:

 The right-hand side types fall into two distinct classes:
 those which define the forms which a keyword right-hand
 side may take, and those affecting the scanning of the
 right- and left-hand tables for keyword matches (control
 codes). They are dealt with separately below.

 292 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 Control Code Description _______ ____ ___________

 hex FF Terminate search of right-hand table.
 Forces scan for a keyword match to fail.
 hex FE Abort right-hand table search. Forces the
 keyword scanner to reject the match of the
 keyword’s left-hand side, and to continue
 scanning for an alternate match to the
 left-hand side following the point in the
 left-hand table at which the previous left-
 hand side match was found.
 hex FD Process parenthesized right-hand sides.
 Causes the current keyword expression’s
 right-hand side to be treated as a paren-
 thesized list of right-hand sides if such a
 list appears (e.g., INFO=(SIZE,TYPE) would
 be processed as if INFO=SIZE,INFO=TYPE had
 been given).
 hex FC Separator filter. Used in conjunction with
 bits 20-21 of the sws parameter (see "Sub- ___
 routine Options" below) to provide a barri-
 er to keyword expressions depending on the
 character string connecting the keyword
 expression’s left- and right-hand sides.
 If the connecting string is not in the set
 defined by information following the type
 code, the expression is considered invalid
 at this point.
 hex FB Suppress spelling correction for the next
 right-hand side entry.
 hex FA Force uppercase conversion of right-hand
 side even if bits 25-26 of sws are B’10’. ___

 The remaining types follow.

 Type Code Description ____ ____ ___________

 1 Literal Characters. The right-hand side is
 matched against a specified character
 string.

 2 FDname. The right-hand side is interpreted
 as an MTS FDname, or concatenation of
 FDnames, and an FDUB is acquired for it.

 3 Characters. The right-hand side is taken
 as an arbitrary character string, possibly
 subject to minimum and maximum length
 restrictions.

 4 MTS Line Number. The right-hand side is
 interpreted as an optionally signed decimal
 number of maximum 6 integral digits and 3

 KWSCAN 293

 MTS 3: System Subroutine Descriptions

 April 1981

 fractional digits followed by an optional
 scale factor, and then multiplied by 1000
 to remove any fractional digits.

 5 Hexadecimal Number. The right-hand side is
 interpreted as a hexadecimal number, maxi-
 mum of 8 hex digits.

 6 Initial Substring Literal. The right-hand
 text must begin with a specified string of
 characters.

 7 No Right-Hand Side. No right-hand side may
 be given in the keyword expression (e.g.,
 only the degenerate form "LHSide" is
 accepted).

 8 Ignore Keyword. The entire keyword expres-
 sion is ignored. No instructions in the
 execute table are performed.

 9 Characters in Given Set. The characters
 constituting the keyword expression right-
 hand side must all be members a given set
 of characters.

 10 Characters Except in Given Set. The char-
 acters constituting the keyword expres-
 sion’s right-hand side may not contain any
 of the characters in a given set.

 11 Optionally Negated Characters. Same as the
 characters (3) type, but a preceding negat-
 ing prefix (one of "-", "¬", "NO", or "N")
 is allowed. Different execute-table in-
 structions may be performed, depending on
 whether the negating prefix was found.

 12 Optionally Negated Literal. Same as the
 literal characters (1) type, with addition-
 al features of type 11.

 13 Optionally Negated Initial Substring Liter-
 al. Same as initial substring literal (6)
 type, with additional features of type 11.

 14 Delimited Character String. The right-hand
 side value is interpreted as a character
 string initiated and terminated by a string
 delimiter character in a set defined by
 information in the right-hand table entry.
 Doubled instances of the string delimiter
 are compressed into a single instance of

 294 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 the delimiter. A maximum and minimum
 length of the resultant string may be
 defined. The resultant string length must
 be less than 128 characters.

 15 Integer Number. The right-hand side value
 may be an integer number consisting of an
 optional sign followed by at most 9 decimal
 digits, and possibly followed by a scale
 factor character.

 16 Flagged Hexadecimal Number. The right-hand
 side value is interpreted as a hexadecimal
 number of 8 digits maximum, expressed in
 the form X’number’.

 17 Floating-Point Number. The right-hand side
 value is interpreted as a FORTRAN-style
 long real number, optionally followed by a
 scale factor.

 18 PAR Field. The right-hand side value is
 taken as the remainder of the input string.

 20 Literal Substring. The right-hand side is
 compared against a specified string to
 determine whether the right-hand side
 represents an initial substring of it.

 21 Optionally Negated Literal Substring. Same
 as the literal substring (20) with the
 additional features of type 11.

 Formats of Right-Hand Table Entries:

 Control Code Format and Description _______ ____ ______ ___ ___________

 hex FF 1 byte X’FF’
 hex FE 1 byte X’FE’
 hex FD 1 byte X’FD’
 hex FC 1 byte X’FC’,
 1 byte containing the number of bytes fol-
 lowing (N),
 N bytes ordinal positions of the separators
 in the list passed as the slist _____
 parameter, or implied by sws bits 20 ___
 and 21 having the value 01 (see
 "Subroutine Options" below) with
 zero indicating no separator (a
 degenerate keyword expression). If
 the separator is not in the set
 described by the given N bytes, the
 keyword expression is considered

 KWSCAN 295

 MTS 3: System Subroutine Descriptions

 April 1981

 invalid.
 hex FB 1 byte X’FB’

 Noncontrol right-hand table entries are of the format:

 1 byte - type code,
 1 byte - execute table index,
 1 byte - number of bytes following (N),
 N bytes - variable information, dependent upon type
 code, described below.

 Right-Hand Side Type Information:

 Literal (1) The N characters of the literal
 string.

 FDname (2) Either N=0, in which case any FDname
 is accepted, or N=1 and the letter N
 must follow, in which case no FDnames
 specifying explicit concatenation are
 matched.

 Character (3) N is 0, 1, or 2. If N=0, any charac-
 ter string is accepted. If N=1, one
 byte of information is given contain-
 ing the maximum permissible length of
 the character string. If N=2, two
 bytes of information should follow,
 respectively giving the minimum and
 maximum permissible lengths of the
 string.

 MTS Line Number (4) N must be an integral multiple of 5.
 A series of N/5 operations are per-
 formed on the value of the number.
 The operations are specified by a
 1-character operation code followed by
 a 4-byte unaligned integer operand
 associated with the operation code.
 The operations are applied in the
 order in which they appear.

 The right-hand side value has already
 been multiplied by 1000 at the time of
 the first operation.

 The operations are:

 Opcode ">": the right-hand side value
 is compared to the operand
 value. If the right-hand
 side value is less, the
 right-hand side match

 296 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 fails.
 Opcode "<": the right-hand side value
 is compared to the operand
 value. If the right-hand
 side value is greater, the
 right-hand side match
 fails.
 Opcode "*": the right-hand side value
 multiplied by the operand
 value.
 Opcode "/": the right-hand side value
 is divided by the operand
 value.

 Any other opcode: the operation code
 character is interpreted as an option-
 al scale factor, which, if present at
 the end of the right-hand side value,
 causes the value to be multiplied by
 the operand value.

 Hex Number (5) N should be zero.

 Initial Substring N characters constituting the text
 Literal (6) that must be an initial substring of
 the right-hand side text are given.

 No Right-Hand N should be zero.
 Side (7)

 Ignore (8) N should be zero.

 Characters in 2 bytes defining the minimum and
 Given Set (9) maximum permissible lengths of the
 right-hand side text are given, fol-
 lowed by N-2 characters that consti-
 tute the set of which each character
 of the right-hand side must be a
 member.

 Characters Except 2 bytes defining the minimum and
 in Given Set (10) maximum permissible lengths of the
 right-hand side text are given, fol-
 lowed by N-2 characters that may not
 be present in the right-hand side
 text.

 Optionally Negated N is either 1, 2, or 3. In all cases,
 Characters (11) a single byte giving the right-hand
 table execute-table index used in case
 a negating prefix is found, is given.
 If N=1, the character string may be of
 arbitrary length. If N=2, one further

 KWSCAN 297

 MTS 3: System Subroutine Descriptions

 April 1981

 byte containing the maximum permissi-
 ble length of the character string
 must be present. If N=3, two further
 bytes containing, respectively, the
 minimum and maximum permissible
 lengths of the right-hand side string
 must be present. In all cases, the
 lengths do not include the negating
 prefix, if present.

 Optionally Negated N bytes of information follow, con-
 Literal (12) sisting of a 1-byte execute-table
 index used in case a negating prefix
 is found, followed by N-1 bytes of
 characters comprising the literal text
 of the right-hand side.

 Optionally Negated N bytes of information follow, con-
 Initial Substring sisting of a 1-byte execute-table
 Literal (13) index used in case a negating prefix
 is found, followed by N-1 bytes of
 characters constituting the text of
 the initial substring of the right-
 hand side text.

 Delimited Character The information contains 2 bytes
 String (14) defining the minimum and maximum per-
 missible number of characters, exclud-
 ing the string delimiter characters,
 in the string. Following this is a
 set of N-2 characters, any of which
 may delimit the character string. The
 following two characters, if present
 at the beginning of the delimiter
 list, have special meaning:

 O Optional delimiters. If no match
 is made for the following delimit-
 ers, return the right-hand side
 entry (up to the next zero-level
 delimiter) as-is. If used, O must
 appear first in the delimiter list.
 P The following delimiters are
 grouped in pairs, a left-side fol-
 lowed by a right-side delimiter.

 Integer Number (15) The information is identical to the
 information associated with the MTS
 Line Number (4) type, but the number
 is not multiplied by 1000 prior to
 application of the specified
 operations.

 298 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 Flagged Hex N should be zero.
 Number (16)

 Floating-Point The information is similar to that for
 Number (17) the MTS Line Number (4) type, differ-
 ing in that the operand values are
 unaligned long floating-point numbers,
 and therefore the entries are 9 bytes
 in length. The right-hand side value
 is not multiplied by 1000.

 PAR Field (18) N should be zero.

 Literal Table (19) A 4-byte address of a table containing
 a list of literals (N must always be
 4). The table is of the form:

 1-byte item width
 1-byte count of number of items
 Series of entries of specified
 width

 All items must be of the same length,
 left-justified with trailing blanks,
 e.g.,

 DC AL1(7,3)
 DC CL7’NEW’
 DC CL7’OLD’
 DC CL7’CURRENT’

 Literal Substring A 1-byte number whose value defines
 (20) the minimum length of the substring
 that must match the given text should
 be given. If this value is zero, no
 restriction on the substring length is
 enforced (note that this right-hand
 side type will never match a null
 substring). Following this byte, N-1
 characters constituting the text of
 the string to be tested for substring
 containment are given.

 Optionally Negated A 1-byte execute-table index used in
 Literal Substring the case when negating a prefix is
 (21) encountered must be specified, fol-
 lowed by N-1 bytes formatted as the
 information following the literal sub-
 string type (20).

 KWSCAN 299

 MTS 3: System Subroutine Descriptions

 April 1981

 General Register Values When Execute Instruction is Performed:

 Right-Hand Type Register Contents __________ ____ ________ ________

 Literal (1) GR1: Length-1 of the right-hand side
 string.
 GR2: Address of the first character
 of the string.

 FDname (2) GR2: FDUB pointer for the right-hand
 side FDname.

 Characters (3) As for type 1.

 MTS Line Number (4) GR2: Value of the number times 1000,
 and as altered by any
 operations in the matching
 right-hand table entry.

 Hex number (5) GR2: The hex number, right justified.

 Initial Substring As for type 1.
 Literal (6)

 No Right-Hand No registers are set up.
 Side (7)

 Ignore (8) No instruction is executed.

 Characters in As for type 1.
 Given Set (9)

 Characters Except As for type 1.
 in Given Set (10)

 Optionally Negated As for type 1, but any negating prefix
 Characters (11) is not indicated.

 Optionally Negated As for type 11.
 Literal (12)

 Optionally Negated As for type 11.
 Initial Substring
 Literal (13)

 Delimited Character As for type 1, except that the string
 String (14) delimiting characters are not
 indicated.

 Integer Number (15) GR2: Value of the number as altered
 by the right-hand table
 operations.

 300 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 Flagged Hex GR2: Value of the hex number, right-
 Number (16) justified.

 Floating-Point FR0: Value of the right-hand side as
 Number (17) altered by the right-hand table
 operations.

 PAR Field (18) As for type 1.

 Literal Substring As for type 1.
 (20)

 Optionally Negated As for type 14.
 Literal Substring
 (21)

 In addition, GR3 always contains a logical index into the
 left-hand table to indicate which entry matched the
 keyword expression’s left-hand side. The index is in the
 form of 4*(ordinal position - 1) of the entry in the

 KWSCAN 300.1

 MTS 3: System Subroutine Descriptions

 April 1981

 300.2 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 left-hand table. GR15 contains the address of the
 executed instruction in the execute table.

 The remaining registers are set to their values at the
 time of the subroutine call (see "Subroutine Options,"
 bits 20-22, for possible exceptions to this). Any regis-
 ters in the GR1-GR2 range unused by a right-hand side type
 are not restored to their values at the time of the
 subroutine call.

 Subroutine Options:

 The bits of the fullword indicated by the sws parameter ___
 define the subroutine behavior options. The bits and
 their associated effects are given below.

 Bit # Value Hex Value Effect ___ _ _____ ___ _____ ______

 11 1 X’00100000’ On return from the instruction or sub-
 routine executed for a given matched key-
 word, KWSCAN checks GR0 for the following
 control bits.

 31: Do not print error message (if any).
 30: Do not print error prompting message
 (if any).

 GR0 is initialized to zero by KWSCAN before
 the execute instruction is executed.

 12 1 X’00080000’ On return, KWSCAN will provide a scanned-
 keyword table in the buffer addressed by
 word 6 of the sinfo buffer. KWSCAN allo- _____
 cates this buffer. This bit is valid only
 if bit 13 is set.

 The buffer begins with a fullword giving
 the length (in bytes) of the keyword infor-
 mation followed by a fullword giving the
 number of keywords scanned. The format of
 the entries is as follows:

 HW 1: Entry length (in bytes), including
 this halfword.
 HW 2: Matched LHS index.
 HW 3: Displacement (in bytes) to LHS text.
 HW 4: LHS-text length (in bytes).
 HW 5: Displacement to separator text (e.g.,
 "=")
 HW 6: Separator-text length
 HW 7: Matched RHS index.
 HW 8: Displacement to RHS text.

 KWSCAN 301

 MTS 3: System Subroutine Descriptions

 April 1981

 HW 9: RHS-text length.
 HW 10-end: Text area.

 13 1 X’00040000’ On return, KWSCAN will provide summary
 information in the buffer addressed by
 sinfo. The format of the information is as _____
 follows:

 Word 1: Length (in bytes) of this buffer.
 This is set by the calling program.
 Word 2: Length (in bytes) of the informa-
 tion returned. This is set by
 KWSCAN.
 Word 3: Total number of keywords processed.
 Word 4: Number of keywords successfully
 processed.
 Word 5: Number of characters processed.
 Word 6: Address of scanned keyword table if
 bit 12 is one; otherwise, zero.
 The table is allocated by KWSCAN
 but must be released by the calling
 program via FREESPAC.

 0 No summary information is returned.

 14 1 X’00020000’ Upon entry, KWSCAN saves the previous
 attention-interrupt exit (if any) and sets
 its own local exit. Then, if an attention
 interrupt occurs during KWSCAN processing,
 KWSCAN immediately returns with the return
 code set to 4 and the rvec error code set ____
 to 4. The original attention-interrupt
 exit is restored upon return from KWSCAN.
 0 No attention-interrupting processing is
 performed by KWSCAN.

 15 1 X’00010000’ Rather than leaving the pertinent right-
 hand side values in the general registers
 and executing a single instruction in the
 execute table, the ext parameter is inter- ___
 preted as the address of a subroutine which
 is passed the register contents as parame-
 ters. The subroutine should obey OS type I
 (S) calling conventions. The parameters
 passed consist of:

 1 word - sum of left- and right-hand table
 execute indices,
 1 word - GR1 contents,
 1 word - either contents of FR0 if its
 value is set as a result of a
 keyword match, or the contents of
 GR2 if it is not an address, or an

 302 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 array containing the information
 indicated by GR2 if it is,
 1 word - GR3 value,
 1 word - GR4 value (see bit 22, below),
 1 word - GR5 value (see bits 20-21, below).

 A return code of 0 from this subroutine
 will cause the keyword match to be
 accepted; 4 will cause the match to be
 rejected; 8 will cause the scan for key-
 words to be aborted.

 16-17 11 X’0000C000’ Spelling correction of left- and right-hand
 sides is performed (see the description of
 the SPELLCHK subroutine in this volume).
 Verification of the correction is requested
 if the subroutine is being invoked in
 conversational mode. If in batch mode, the
 correction is never performed.
 01 X’00004000’ Spelling correction is performed as above,
 but no verification is requested, only a
 warning message is issued.
 00 No spelling correction is attempted.

 18 1 X’00002000’ The return vector indicated by the rvec ____
 parameter is formatted in the following
 manner:

 1 word - error code, listed below,
 26 words - variable information, dependent
 upon error code:

 Code Significance and Information Returned ____ ____________ ___ ___________ ________

 1 "CANCEL" given in response to
 prompt for corrective input. No
 further information is returned.
 2 Invalid keyword expression.
 Information returned:

 1 word - address of first char.
 in invalid expression,
 1 word - length of bad expression,
 1 word - length of error comment
 pertaining to bad
 expression,
 23 words - text of error comment.

 3 Keyword processing aborted by
 execute code return. No further
 information returned.
 4 Keyword processing aborted by
 an attention interrupt (only if

 KWSCAN 303

 MTS 3: System Subroutine Descriptions

 April 1981

 bit 14 of sws is one). No ___
 further information returned.
 10 Invalid right-hand side type in
 right-hand table. The address of
 the invalid entry is returned.
 11 Invalid format of right-hand table
 entry. The address of the
 invalidly formatted entry is
 returned.
 12 Invalid format of separator list.
 The address of the invalidly
 formatted entry is returned.
 30 Internal error.
 31 Internal error.

 0 The return vector indicated by the rvec ____
 parameter is formatted in the following
 manner:

 1 word - address of invalid keyword
 expression,
 1 word - length of error comment,
 25 words - text of error comment.

 This format is only used if an erroneous
 keyword expression is encountered. In all
 other cases, no information is returned.

 19 1 X’00001000’ Keyword expression left-hand sides may be
 parenthesized (e.g., keyword expressions of
 the form (EXP1,EXP2,...,EXPN)=value are
 processed as being equivalent to EXP1=
 value,EXP2=value,..., EXPN=value).
 0 Keyword expression left-hand sides are not
 processed specially if parenthesized.

 20-21 11 X’00000C00’ The slist parameter indicates a special set _____
 of strings which separate keyword expres-
 sion left- and right-hand sides, in lieu of
 the standard "=" (e.g., "<-" could be
 defined as a separator, making expressions
 "LHSide<-value" valid). The format of the
 slist set is: _____

 1 byte - number of separators to be
 defined,
 (1 byte - length of separator,
 N bytes - text of separator) repeated for
 each separator.

 If this option is selected, at the time the
 executed instruction is performed, GR5 con-
 tains an indicator of which separator was

 304 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 found in the keyword expression, in the
 form of 4*(separator’s ordinal position in
 the list) with 0 indicating that no separa-
 tor was found (i.e., a degenerate keyword
 expression).
 01 X’00000400’ The slist parameter need not be specified, _____
 but a relational set of separators are used
 as if the slist parameter had specified _____

| ">=", "<=", "Ë=" or "¬=", ">", "<", "="

 in the presented order. GR5 is also set up
 as described above.
 00 Only "=" is a valid separator character.

 22 1 X’00000200’ The dlist parameter indicates a set of _____
 single characters to be considered as de-
 limiting characters in keyword expressions.
 Additionally, a context is defined with
 each character, specifying a context in
 which the character is to be considered a
 delimiter. The format of the set is:

 1 byte - number of delimiters to be defined
 (1 byte - delimiter character,
 1 byte - context: 0 for balanced
 parenthesis context,
 1 for all contexts),
 repeated for each delimiter de-
 fined in the set.

 If this option is selected, at the time the
 executed instruction is performed, GR4 con-
 tains the address of the right side delimi-
 ter character in the keyword expression.
 0 The only valid delimiters are the blank in
 all contexts, and the comma when not nested
 inside parentheses.

 23 1 X’00000100’ Keyword left-hand sides may be given as
 initial substrings of the left-hand side
 texts defined in the left-hand table.
 0 Keyword left-hand sides must be presented
 exactly as in the left-hand table.

 24 1 X’00000080’ The address given by the text parameter ____
 will be updated to indicate the delimiter
 at the end of the last keyword processed.
 0 text is not updated. ____

 25-26 10 X’00000040’ Convert all keyword input to uppercase,
 including prompt input. Translation to
 uppercase and subsequent processing is per-

 KWSCAN 305

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 formed upon a copy of the input text, not
 on the input text itself. However, whenev-
 er a character value is returned for a
 matched right-hand side entry, it is re-
 turned in its original, unconverted form.
 01 X’00000020’ Same as 10 except that alphabetic charac-
 ters are returned converted to uppercase.
 00 Leave all input as is.

 27 1 X’00000010’ In the left-hand table, the right-hand
 table and execute table indices occupy 2
 bytes.
 0 The above entries occupy 1 byte.

 28 1 X’00000008’ Return to the calling program on the first
 invalid keyword expression encountered.

 29 1 X’00000004’ Prompt user for corrections if invalid
 expressions are found.
 0 Do not prompt user for correction.

 30 1 X’00000002’ Print error comments on *MSINK*.
 0 Do not print error comments, return them in
 the rvec return vector. ____

 31 1 X’00000001’ Process all keyword expressions until the
 input string is exhausted.
 0 Process a single keyword expression only.

 The remaining bits should be zero.

 Examples: A series of examples are given in increasing order of
 complexity. The KWSCAN macros (KWLHT, KWRHT, and KWSET)
 described in MTS Volume 14, 360/370 Assemblers in MTS, _________________________
 should be used to set up the KWSCAN tables. Each example
 is presented both with and without the use of the KWSCAN
 macros.

 It is possible to call KWSCAN directly from FORTRAN
 programs. If bit 15 in sws is set, KWSCAN will call a ___
 subroutine when it matches a keyword, instead of trying to
 execute some machine instructions directly. However,
 setting up the LHS and RHS tables in FORTRAN is very
 tedious and error prone. Several unsupported (UNSP)
 programs exist which can provide some help setting up
 these tables for FORTRAN. Another possible approach is to
 use the KWSCAN assembly macros, mentioned above, to set up
 the keyword tables separately. The Computing Center
 counselors should be contacted for further assistance in
 using KWSCAN from FORTRAN programs.

 The first example mimics the processing of some of the
 options of the MTS $SET command, namely:

 306 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 ENDFILE=ON, ENDFILE=OFF, ENDFILE=NEVER
 LIBSRCH=OFF, LIBSRCH=FDname
 SHFSEP=c
 TIME=xxxx, TIME=xxxxS, TIME=xxxxM
 RF=<hex number>, RF=GRxx

 ... read into location STR
 CALL KWSCAN,(LHTL,LHT,EXT,STR,RHT,STRL,SWS,0)
 ... process the keywords

 *
 * Since SWS does not select the options requiring the
 * DLIST and SLIST parameters, they need not be given.
 *

 LHT EQU *
 DC AL1(ENDF-RHT,ENDFE-EXT,7),C’ENDFILE’
 DC AL1(LIBS-RHT,LIBSE-EXT,7),C’LIBSRCH’
 DC AL1(SHFS-RHT,SHFSE-EXT,6),C’SHFSEP’
 DC AL1(TIME-RHT,TIMEE-EXT,4),C’TIME’
 DC AL1(RF-RHT,RFE-EXT,2),C’RF’
 RHT EQU *
 ENDF DC AL1(1,0,2),C’ON’ ENDFILE=ON
 DC AL1(1,4,3),C’OFF’ ENDFILE=OFF
 DC AL1(1,8,5),C’NEVER’ ENDFILE=NEVER
 DC X’FF’
 LIBS DC AL1(1,0,3),C’OFF’ LIBSRCH=OFF
 DC AL1(2,6,1),C’N’ LIBSRCH=<FDname>
 DC X’FF’
 SHFS DC AL1(3,0,2,1,1) SHFSEP=c
 DC X’FF’
 TIME DC AL1(4,0,25)
 DC C’>’,FL4’0’ Make sure it’s >0
 DC C’M’,FL4’60’ TIME=xxxM
 DC C’S’,FL4’1’ TIME=xxxS
 DC C’*’,FL4’768’ Convert to timer units
 DC C’/’,FL4’10’
 DC X’FF’
 RF DC AL1(5,0,0) RF=xxxxxxxx
 DC AL1(6,4,2),C’GR’ RF=GRxx
 DC X’FF’
 LHTL DC Y(RHT-LHT)

 EXT EQU *
 ENDFE MVI ENDFF,1 Set ENDFILE type code
 MVI ENDFF,2
 MVI ENDFF,0
 LIBSE XC FDUB,FDUB Zero FDUB signifies OFF
 ST GR2,FDUB Save fdub
 SHFSE MVC SHFSEP(1),0(GR2) Save new SHFSEP char
 TIMEE ST GR2,TIMEVAL Save TIME value
 RFE ST GR2,RFVAL Save hex value
 BAL GR15,*+4 Make this a subroutine

 KWSCAN 307

 MTS 3: System Subroutine Descriptions

 April 1981

 * for GRxx case
 CH GR1,=H’1’
 BNH 2(,GR15) -> no xx piece
 CH GR1,=H’3’
 BH 2(,GR15) -> more than just xx
 *
 * Now can process value (much omitted here)
 *
 BR GR15

 SWS DC XL4’0000C027’ Correct spelling, print,
 * prompt, multiple
 * keywords, uppercase
 ENDFF DS X
 SHFSEP DS C
 STR DS CL80
 STRL DS H
 FDUB DS A
 TIMEVAL DS F
 RFVAL DS A

 308 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 ENDFILE=OFF _______ ___
 |
 |
 ┌────────────────────────────┘
 |
 |
 | Right-Hand Table Index ┌────────────────────────┐ ┌ ┌ ┌
 | ┌───────────────────────────| 1 | 0 | 2 | ON | >
 | |(Base for ENDFILE Table) |────┼────┼────┼─────────| ┌ ┘
 | | | 1 | 4| | 3 | OFF |
 | | |────┼──┼─┼────┼─────────| ┌ ┘
 | | | 1 | 8| | 5 | NEVER |
 | | |────┼──┼────────────────┘ ┌ ┘ ┘
 | | | FF | |
 | | └────┘ | Right-Hand Table __________ _____
 | | |
 | | |
 | | Execute Table Index #2 (+4) |
 | | ┌──────────────────────────────┘
 | | |
 | | |
 | | | ┌──────────────┐
 | | | | MVI ENDFF,1 | Execute Inst. for ENDFILE=ON
 | | | |──────────────| ┌ ┘
 | | |───────| MVI ENDFF,2 | Execute Inst. for ENDFILE=OFF ┌ >
 | | | |──────────────| ┌ ┘
 | | | | MVI ENDFF,0 | Execute Inst. for ENDFILE=NEVER
 | | | └──────────────┘
 | | | Execute Table _______ _____
 | | |
 | | |
 | | | Execute Table Index #1 (Base for ENDFILE Table)
 | | |
 | | |
 | ┌─┼────┼─────────────────┐ ┌ ┌ ┌
 └────| | | | | 7 | ENDFILE | >
 |────┼────┼────┼─────────| ┌ ┘
 | | | 7 | LIBSRCH |
 |────┼────┼────┼─────────| ┌ ┘
 | | | 6 | SHFSEP |
 |────┼────┼────┼─────────| ┌ ┘
 | | | 4 | TIME |
 |────┼────┼────┼─────────| ┌ ┘
 | | | 2 | RF |
 └────────────────────────┘ ┘ ┘ ┘
 Left-Hand Table _________ _____

 The diagram above illustrates the resultant processing for ENDFILE=OFF.

 KWSCAN 309

 MTS 3: System Subroutine Descriptions

 April 1981

 The above example is repeated below using the KWSCAN macros.

 ENDFILE=ON, ENDFILE=OFF, ENDFILE=NEVER
 LIBSRCH=OFF, LIBSRCH=FDname
 SHFSEP=c
 TIME=xxxx, TIME=xxxxS, TIME=xxxxM
 RF=<hex number>, RF=GRxx

 ... read into location STR
 CALL KWSCAN,(LHTL,LHT,EXT,STR,RHT,STRL,SWS,0)
 ... process the keywords

 *
 * Since SWS does not select the options requiring the
 * DLIST and SLIST parameters, they need not be given.
 *

 *
 * The keyword scanner tables.
 *
 KWSET RHTABLE=RHT,EXTABLE=EXT

 LHTL DC Y(RHT-LHT) (HW length of Left-hand table)

 *
 * Left-hand table.
 *
 LHT KWLHT ENDF,ENDFE,’ENDFILE’
 KWLHT LIBS,LIBSE,’LIBSRCH’
 KWLHT SHFS,SHFSE,’SHFSEP’
 KWLHT TIME,TIMEE,’TIME’
 KWLHT RF,RFE,’RF’

 *
 * Right-hand Table.
 *
 RHT KWSET EXTABLE=ENDFE
 ENDF KWRHT LIT,ENDFE,’ON’ Endfile = on
 KWRHT LIT,ENDFE2,’OFF’ = off
 KWRHT LIT,ENDFE3,’NEVER’ = never
 KWRHT END

 KWSET EXTABLE=LIBSE
 LIBS KWRHT LIT,LIBSE,’OFF’ Libsrch = off
 KWRHT FDNAME,LIBSE2,N = FDname
 KWRHT END

 KWSET EXTABLE=SHFSE
 SHFS KWRHT CHARS,SHFSE,1,1 Shfsep = c
 KWRHT END

 KWSET EXTABLE=TIMEE Time = xxxx | xxxxS | xxxxM
 TIME KWRHT INTEGER,TIMEE,(>,0),(M,60),(S,1)

 310 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 KWRHT END

 KWSET EXTABLE=RFE
 RF KWRHT HEX,RFE RF = xxxxxxxx
 KWRHT SUBSTR,RFE2,’GR’ = GRxx
 KWRHT END

 *
 * The executed code.
 *
 EXT DS 0H

 ENDFE MVI ENDFF,1 ENDFILE=ON
 ENDFE2 MVI ENDFF,2 ENDFILE=OFF
 ENDFE3 MVI ENDFF,0 ENDFILE=NEVER

 LIBSE XC FDUB,FDUB LIBSRCH=OFF (set FDUB to zero)
 LIBSE2 ST GR2,FDUB LIBSRCH=FDname

 SHFSE MVC SHFSEP(1),0(GR2) SHFSEP=c

 TIMEE ST GR2,TIMEVAL TIME=xxxx | xxxxS | xxxxM

 RFE ST GR2,RFVAL RF=xxxxxxxx
 RFE2 BAL GR15,*+4 RF=GRxx (make a "subroutine")
 CH GR1,=H’1’ (GR1 = RHS length - 1)
 BNH 2(,GR15) Reject RHS. No xx piece
 CH GR1,=H’3’
 BH 2(,GR15) Reject RHS. Too long.

 ...process the value (much omitted here)...

 BR GR15 Accept the RHS, return from RFE2.

 ...the rest is the same as before...

 KWSCAN 311

 MTS 3: System Subroutine Descriptions

 April 1981

 The second example shows the MTS $FILESTATUS command. It processes:

 NAME=filename, filename
 HEADING=ON, HEADING=OFF, HEAD, NOHEAD
 OUTFORM=COL..., OUTFORM=KEY..., OUTFORM=LABEL...,
 OUTFORM=PACK..., COL..., KEY..., LABEL..., PACK...
 SIZE>=x, SIZE<=x, SIZE=x, SIZE<x, SIZE>x,
 SIZE>=xP, SIZE<=xP, SIZE=xP, SIZE<xP, SIZE>xP

 (This is a small subset of the parameters of the
 $FILESTATUS command).

 MVI NAMEF,0 Initialize flag
 TRYAGAIN CALL KWSCAN,(LHTL,LHT,EXT,STR,RHT,STRL,SWS,RVEC)
 LTR GR15,GR15
 BZ OK -> All ok
 CLC =F’1’,RVEC
 BE ABORT -> User said to CANCEL it
 CLC =F’3’,RVEC
 BNE VERYBAD -> Unexpected return code
 SERCOM ’TRY AGAIN.’
 B TRYAGAIN -> Sic

 LHTL DC Y(RHT-LHT) Length of left-hand table

 LHT EQU *
 DC AL1(JUNK-RHT,0,7),C’OUTFORM’
 DC AL1(HEAD-RHT,HEADE-EXT,7),C’HEADING’
 DC AL1(NAME-RHT,NAMEE-EXT,4),C’NAME’
 DC AL1(SIZE-RHT,SIZEE-EXT,4),C’SIZE’
 DC AL1(JUNK-RHT,0,0) Null left-hand side
 RHT EQU *
 HEAD DC X’FC’,AL1(1,6) Only let through "="
 DC AL1(1,0,2),C’ON’ HEADING=ON
 DC AL1(1,4,3),C’OFF HEADING=OFF
 DC X’FF’
 SIZE DC X’FC’,AL1(5,1,2,4,5,6) Don’t let null left-
 * hand sides or SIZE¬=xxx
 * through here
 DC AL1(4,0,5) SIZE(>=,<=,>,<,=)xxxP
 DC C’P’,FL4’1’
 DC X’FF’
 NAME DC X’FC’,AL1(1,6) Only let through "="
 DC AL1(3,0,2,1,17) NAME=<1 to 17 characters>
 DC X’FF’
 JUNK EQU *
 OUTF DC X’FC’,AL1(2,0,6) Only let through "=" and
 * degenerates
 DC AL1(6,OUTFE-EXT,3),C’COL’ OUTFORM=COL
 * or COL
 DC AL1(6,OUTFE-EXT+4,3),C’KEY’ OUTFORM=KEY
 * or KEY

 312 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 DC AL1(6,OUTFE-EXT+8,5),C’LABEL’ OUTFORM=LABEL
 * or LABEL
 DC AL1(6,OUTFE-EXT+12,4),C’PACK’ OUTFORM=PACK
 * or PACK
 DC X’FC’,AL1(1,0) Only let null left-hand
 * side through
 DC AL1(12,HEADE-EXT,5,HEADE-EXT+4),C’HEAD’
 * HEAD or NOHEAD
 DC AL1(3,NAMEE-EXT,2,1,17) <filename>
 DC X’FF’

 EXT EQU *
 HEADE MVI HEADF,1 Header
 MVI HEADF,0 No header
 NAMEE BAL GR15,*+4 Make this a subroutine
 TM NAMEF,1 Already have a name?
 BO 16(,GR15) -> Yup, user blew it
 OI NAMEF,1 Remember name was saved
 EX GR1,FILEMVC Save name
 BR GR15 -> To KWSCAN
 FILEMVC MVC FILENAME(0),0(GR2)
 SIZEE BAL GR15,*+4 Make this a subroutine
 STC GR5,RELATION Save relational character
 ST GR2,SIZEVAL Save size value
 BR GR15 -> To KWSCAN
 OUTFE MVI FORMF,0 Select heading format
 MVI FORMF,1
 MVI FORMF,2
 MVI FORMF,3

 HEADF DS X
 NAMEF DS X
 FILENAME DS CL17
 RELATION DS X
 SIZEVAL DS F
 FORMF DS X
 STR DC CL80’OUTFORM=COL,JUNK,SIZE>5P,NOHEAD’
 STRL DC H’80’
 SWS DC X’0000E427’ Correct spelling, RVEC
 * format, relational
 * separators, uppercase,
 * print, prompt, multiple
 * keywords
 RVEC DS 27F

 KWSCAN 313

 MTS 3: System Subroutine Descriptions

 April 1981

 The above example is repeated below using the KWSCAN macros.

 MVI NAMEF,0 Initialize flag
 TRYAGAIN CALL KWSCAN,(LHTL,LHT,EXT,STR,RHT,STRL,SWS,RVEC)
 LTR 15,15
 BZ OK -> All OK.
 CLC =F’1’,RVEC
 BE ABORT -> User said to CANCEL it.
 CLC =F’3’,RVEC
 BNE VERYBAD -> Unexpected return code
 SERCOM ’ Try again.’
 B TRYAGAIN -> Sic

 KWSET RHTABLE=RHT
 LHTL DC Y(RHT-LHT) Length of left-hand table

 LHT KWLHT JUNK,0,’OUTFORM’
 KWLHT HEAD,HEADE-EXT,’HEADING’
 KWLHT NAME,NAMEE-EXT,’NAME’
 KWLHT SIZE,SIZEE-EXT,’SIZE’
 KWLHT JUNK,0 Null left-hand side

 RHT EQU *
 HEAD KWRHT FILTER,(6) Only let through "="
 KWRHT LIT,0,’ON’ HEADING=ON
 KWRHT LIT,4,’OFF’ HEADING=OFF
 KWRHT END
 SIZE KWRHT FILTER,(1,2,4,5,6) Don’t let null left-hand
 * sides or SIZE¬=xx through
 * here
 KWRHT LINENR,0,(P,1) SIZE (>=,<=,>,<,=)xxxP
 KWRHT END
 NAME KWRHT FILTER,(6) Only let through "="
 KWRHT CHARS,0,1,17 NAME=<1 TO 17 characters>
 KWRHT END
 JUNK KWRHT FILTER,(0,6) Only let through "=" and
 * degenerates
 KWRHT SUBSTR,OUTFE-EXT,’COL’ OUTFORM=COL or COL
 KWRHT SUBSTR,OUTFE-EXT+4,’KEY’ OUTFORM=KEY or KEY
 KWRHT SUBSTR,OUTFE-EXT+8,’LABEL’ OUTFORM=LABEL or
 * LABEL
 KWRHT SUBSTR,OUTFE-EXT+12,’PACK’ OUTFORM=PACK or PACK
 KWRHT FILTER,(0) Only let null left-hand
 * side through
 KWRHT NEGLIT,(HEADE-EXT,HEADE-EXT+4),’HEAD’
 * HEAD or NOHEAD
 KWRHT CHARS,NAMEE-EXT,1,17 <filename>
 KWRHT END

 EXT DS 0H
 HEADE MVI HEADF,1 Header
 MVI HEADF,0 No header
 NAMEE BAL 15,*+4 Make this a subroutine

 314 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 TM NAMEF,1 Already have a name?
 BO 16(,15) -> Yup, user blew it
 OI NAMEF,1 Remember name was saved
 EX 1,FILEMVC Save name
 BR 15 -> To KWSCAN
 FILEMVC MVC FILENAME(0),0(2)
 SIZEE BAL 15,*+4 Make this a subroutine
 STC 5,RELATION Save relational character
 ST 2,SIZEVAL Save size value
 BR 15 -> To KWSCAN
 OUTFE MVI FORMF,0 Select heading format
 MVI FORMF,1
 MVI FORMF,2
 MVI FORMF,3

 HEADF DS X
 NAMEF DS X
 FILENAME DS CL17
 RELATION DS X
 SIZEVAL DS F
 FORMF DS X
 STR DC CL80’OUTFORM=COL,JUNK,SIZE>5P,NOHEAD’
 STRL DC H’80’
 SWS DC X’0000E427’ Correct spelling, RVEC
 * format, relational
 * separators, uppercase,
 * print, prompt, multiple
 * keywords
 RVEC DS 27F

 KWSCAN 315

 MTS 3: System Subroutine Descriptions

 April 1981

 316 KWSCAN

 MTS 3: System Subroutine Descriptions

 April 1981

 LETGO _____

 Subroutine Description

 Purpose: To periodically unlock and then relock a file.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL LETGO,(unit,howlck,delay)

 FORTRAN: index=LETGO(unit,howlck,delay)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99),
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS), or
 (d) a fullword index value (as returned by a
 previous call to LETGO).
 howlck is the location of a fullword integer indi- ______
 cating how the file is to be relocked each
 time after it has been unlocked (see the
 description of the second argument for the
 subroutine LOCK).
 delay is the location of a fullword-integer number _____
 of microseconds (elapsed time) after which
 the file will be momentarily unlocked and
 then relocked.

 Value Returned:

 index is a fullword value which can be used as the _____
 unit parameter on a subsequent call to LETGO ____
 to stop the unlocking and relocking of the
 file. For assembly language programs, this
 value is returned in GR0.

 Return Codes:

 0 Successful return.
 4 unit (first argument) is not valid for a file, or ____
 howlck or delay are not addressable. ______ _____
 8 Timer interrupt could not be set up (nonzero
 return code from the subroutine SETIME).

 LETGO 317

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: This subroutine will periodically unlock the specified
 file and then immediately attempt to relock it. If the
 file is not locked by another FDUB within the same job,
 the MTS shared-file system first will allow any other
 jobs, which are currently waiting, to access the file.
 This mechanism provides a convenient method whereby a job,
 which expects to be reading a shared-file for an extended
 period, can automatically have the file unlocked periodic-
 ally, thereby permitting other jobs to write into the same _____
 file. Note that this procedure is not necessary if all of
 the jobs accessing the file are only reading it, since
 several jobs may simultaneously read the same file, i.e.,
 several jobs may simultaneously have the file locked for
 reading.

 Since this subroutine uses the system timer interrupt
 subroutines (SETIME and TIMNTRP) which will not interrupt
 a pending input/output operation, the file will not be
 periodically unlocked during an I/O operation. If a timer ______
 interrupt becomes pending during an I/O operation, the
 file will be unlocked and relocked upon completion of the
 operation. Thus, the file will not be periodically ___
 unlocked, for example, during the time a program is
 waiting for input from a terminal.

 LETGO will stop unlocking and relocking a file if the
 index value returned on a call is used as the unit ____
 parameter on a subsequent call. LETGO will also stop
 unlocking and relocking the file when the associated unit
 is released, e.g., when the FDUB is released by calling
 the subroutine FREEFD.

 Example: Assembly: LA 1,=C’DATABASE ’
 CALL GETFD
 ST 0,FDUB
 CALL LETGO,(FDUB,READ,TIME)
 .
 .
 FDUB DS A FDUB-pointer
 READ DC F’1’ Lock for read
 TIME DC F’3000000’ 3 seconds

 This example will unlock the file DATABASE every 3 seconds
 and then relock it for reading. This would allow some
 other job, for example, to lock it for modification
 occasionally (every 3 seconds of elapsed time).

 318 LETGO

 MTS 3: System Subroutine Descriptions

 April 1981

 LINK, LINKF ___________

 Subroutine Description

 Purpose: To effect the dynamic loading and execution of a program.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL LINK,(input,info,parlist,errexit,output,
 lsw,gtsp,frsp,pnt)

 FORTRAN: CALL LINKF(input,info,parlist,errexit,output,
 lsw,gtsp,frsp,pnt)

 Parameters:

 input is the location of an input specifier to be _____
 used during loading to read loader records.
 An input specifier may be one of the
 following:

 (1) an FDname terminated by a blank.
 (2) a FDUB-pointer (as returned by GETFD).
 (3) an 8-character logical I/O unit name,
 left-justified with trailing blanks. In
 this case, bit 8 in info must be 1. ____
 (4) a fullword-integer logical I/O unit num-
 ber (0-99).
 (5) the address of an input subroutine to be
 called during loading via a READ sub-
 routine calling sequence to read loader
 records (i.e., the input subroutine is
 called with a parameter list identical
 to the system subroutine READ). In this
 case, bit 9 in info must be 1. ____

 info is the location of an optional information ____
 vector. No information is passed if info is ____
 0 or if info is the location of a fullword ____
 integer 0. The format of the information
 vector is as follows:

 (1) a halfword of LINK control bits defined
 as follows:

 bit 0: 1, if errexit is specified. _______
 bit 1: 1, if output is specified. ______
 bit 2: 1, if lsw is specified. ___

 LINK, LINKF 319

 MTS 3: System Subroutine Descriptions

 April 1981

 bit 3: 1, if gtsp is specified. ____
 bit 4: 1, if frsp is specified. ____
 bit 5: 1, if pnt is specified. ___
 bit 6: 1, if to suppress search of
 LIBSRCH/*LIBRARY libraries.
 bit 7: 0, unused (must be zero)
 bit 8: 1, if input is the location of _____
 a logical I/O unit name.
 bit 9: 1, if input is the location of _____
 an input subroutine address.
 bit 10: 1, if output is the location of ______
 a logical I/O unit name.
 bit 11: 1, if output is the location of ______
 an output subroutine
 address.
 bit 12: 1, if the program to be loaded
 is to be merged with the
 program previously loaded.
 bit 13: 1, to suppress prompting at a
 terminal.
 bit 14: 1, to force allocation of a new
 loader symbol table.
 bit 15: 0

 (2) a halfword count of the number of
 entries in the following initial ESD
 list.
 (3) a variable-length initial ESD list, each
 entry of which consists of a fullword-
 aligned 8-character symbol followed by a
 fullword value.

 parlist is the location of a parameter list to be _______
 passed in GR1 to the program being linked to.

 errexit (optional) is the location of an error-exit _______
 subroutine address to be called if an error
 occurs while attempting to link to the speci-
 fied program. If bit 0 of info is 0 (the ____
 default), the errexit parameter is ignored _______
 and an error return is made to MTS command
 mode. The exit routine will be called via a
 standard S-type calling sequence with two
 parameters defined as follows:

 P1: the location of a fullword-integer error
 code defined as follows:

 0: attempt to load a null program.
 4: fatal loading error (bad object
 program).
 8: undefined symbols referenced by the
 loaded program.

 320 LINK, LINKF

 MTS 3: System Subroutine Descriptions

 April 1981

 12: no available storage index numbers.
 16: maximum number of link levels
 exceeded.

 P2: the location of a fullword containing
 the loader status word.

 If the exit routine returns, LINK will return
 to MTS without releasing program storage
 (i.e., as if the error exit had not been
 taken).

 output (optional) is the location of an output ______
 specifier to be used during loading to pro-
 duce loader output (error messages, map,
 etc.). If bit 1 of info is 0 (the default), ____
 the output parameter is ignored and all ______
 loader output is written on the MAP=FDname
 specified on the initial $RUN command. An
 output specifier may be one of the following:

 (1) an FDname terminated by a blank.
 (2) a FDUB-pointer (as returned by GETFD).
 (3) an 8-character logical I/O unit name,
 left-justified with trailing blanks. In
 this case, bit 10 of info must be 1. ____
 (4) a fullword-integer logical I/O unit num-
 ber (0-99).
 (5) the address of an output subroutine to
 be called during loading via the SPRINT
 subroutine calling sequence to write
 loader output (i.e., the output sub-
 routine is called with a parameter list
 identical to the system subroutine
 SPRINT). In this case, bit 11 of info ____
 must be 1.

 lsw (optional) is the location of a fullword of ___
 loader control bits. If bit 2 of info is 0 ____
 (the default), the lsw parameter is ignored ___
 and the global MTS settings are used. The
 loader control bits are defined as follows:

 bits 0-23: 0
 bit 24: 1, to suppress the pseudo-register
 map.
 bit 25: 1, to suppress the predefined symbol
 map.
 bit 26: 1, to print undefined symbols.
 bit 27: 1, to print references to undefined
 symbols.
 bit 28: 1, to print references to all exter-
 nal symbols.

 LINK, LINKF 321

 MTS 3: System Subroutine Descriptions

 April 1981

 bit 29: 1, to print dotted lines around the
 loader map.
 bit 30: 1, to print a map.
 bit 31: 1, to print nonfatal error messages.

 gtsp (optional) is the location of a storage ____
 allocation subroutine to be called during
 loading via a GETSPACE calling sequence to
 allocate loader work space and program stor-
 age. If bit 3 of info is zero (the default), ____
 GETSPACE is used.

 frsp (optional) is the location of a storage ____
 deallocation subroutine to be called during
 loading via a FREESPAC calling sequence to
 release loader work space. If bit 4 of info ____
 is 0 (the default), FREESPAC is used.

 pnt (optional) is the location of a direct access ___
 subroutine to be called during loading via a
 POINT calling sequence while processing
 libraries in sequential files. If bit 5 of
 info is 0 (the default), POINT is used. ____

 Values Returned:

 None.

 Description: LINK provides a method for dynamically loading and execut-
 ing a program. LINK provides this facility as follows:

 (1) The loader is called to dynamically load the
 specified program using input, info, output, lsw, _____ ____ ______ ___
 gtsp, frsp, and pnt if specified. ____ ____ ___
 (2) The dynamically loaded program is called with the
 address of parlist in GR1. _______
 (3) If the dynamically loaded program returns to LINK,
 it is unloaded.
 (4) LINK returns to the calling program preserving the
 return registers of the dynamically executed
 program.

 Note that LINK accepts a variable-length parameter list of
 three to eight arguments. For most applications, only the
 first three are required.

 FORTRAN programs (or programs that use the FORTRAN I/O
 library) that dynamically load other FORTRAN programs (or
 programs using the FORTRAN I/O library) should use the
 alternate entry point LINKF. LINKF is required to provide
 the dynamically loaded program with a FORTRAN I/O environ-
 ment consistent with the "merge" bit specified in info. ____
 If the merge bit is 1, the dynamically loaded program will

 322 LINK, LINKF

 MTS 3: System Subroutine Descriptions

 April 1981

 have the same I/O environment as the calling program. If
 the merge bit is 0, the dynamically loaded program will
 have a separate, reinitialized I/O environment. Both
 FORTRAN main programs and subroutines can be dynamically
 loaded using LINKF. However, the effect of executing a
 STOP statement from a dynamically loaded subroutine will
 depend on the setting of the merge bit. If the merge bit
 is 1, a return is made to the calling program; if the
 merge bit is 0, a return is made to MTS.

 Because the rate structure for use of MTS includes a
 charge for allocated virtual memory integrated over CPU
 time, the cost of running a large software package in MTS
 can often be reduced by dynamically loading and executing
 seldom-used subroutines via a call to LINK. Such savings
 in the storage integral must be weighed against the
 additional CPU time required to open a second file,
 reinvoke the loader, and rescan the required libraries.

 The user also should see the sections "The Dynamic Loader"
 and "Virtual Memory Management" in MTS Volume 5, System ______
 Services. In particular, these sections describe the use ________
 of initial ESD lists, merging with previously loaded
 programs, and the relationship between LINK, LOAD, and
 XCTL storage management.

 Example: FORTRAN: INTEGER*2 PAR(4)
 INTEGER*4 ADROF
 DATA PAR/6,’*T’,’P1’,’* ’/
 CALL LINKF(’*LABELSNIFF ’,0,ADROF(PAR))
 END

 The above FORTRAN program is equivalent to issuing the MTS
 command "$RUN *LABELSNIFF PAR=*TP1*".

 Assembly: CALL LINK,(INPUT,INFO,LPAR,ERRX,OUTPT,LSW)
 .
 .
 ERROR STM 14,12,12(13)
 .
 .
 INPUT DC C’MYLIB ’
 INFO DS 0F
 DC XL2’E00C’
 DC H’1’
 DC CL8’GETDATA’,F’0’
 LPAR DC A(PAR)
 PAR DC A(0)
 ERRX DC A(ERROR)
 OUTPT DC C’-MAP ’
 LSW DC A(X’02’)

 LINK, LINKF 323

 MTS 3: System Subroutine Descriptions

 April 1981

 The above assembly language program will dynamically load
 and execute the routine GETDATA from the private library
 MYLIB. The initial ESD list is required to force the
 symbol GETDATA to be initially undefined so that it will
 be extracted from MYLIB. The INFO and LSW control bits
 specify:

 (1) GETDATA is to be merged with currently loaded
 programs.
 (2) No loader prompting will be done in an attempt to
 recover from a loading error.
 (3) The statement labeled ERROR is to receive control
 if a loading error occurs.
 (4) A complete loader map without dots is to be placed
 into the file -MAP.

 324 LINK, LINKF

 MTS 3: System Subroutine Descriptions

 April 1981

 LIOUNITS ________

 Subroutine Description

 Contents: A complete table of legal MTS logical I/O unit names.

 Location: Resident System

 Alt. Entry: LIOUNS

 Description: This table can be used to test the validity of an I/O
 device unit name. The first fullword gives the number of
 entries in the table. Each entry following is an
 8-character left-justified device unit name, e.g.,

 "SCARDS "
 "SPRINT "
 "0 "
 "99 "

 Example: Assembly:

 L 15,=V(LIOUNITS)
 L 1,0(15) Get number of entries
 LA 15,4(15) Get address of first entry
 LOOP CLC 0(8,15),NAME Compare name to table
 BE FOUND Branch if legal name
 LA 15,8(15) Bump pointer to next entry
 BCT 1,LOOP Reduce count
 . Here, if name is illegal
 .
 .
 .
 NAME DC CL8’12’ Left-justified name for unit 12

 FORTRAN: REAL*8 NAMES(1),NAME
 COMMON /LIOUNS/NUMBER,NAMES
 ...
 READ (5,100) NAME
 100 FORMAT (A8)
 DO 10 I=1,NUMBER
 IF (NAME.EQ.NAMES(I)) GO TO 20
 10 CONTINUE
 ...
 20 Error exit

 The above example, given in both assembly language and
 FORTRAN, checks for a valid I/O device unit name.

 LIOUNITS 325

 MTS 3: System Subroutine Descriptions

 April 1981

 In addition for the FORTRAN example, a RIP loader record
 (RIP LIOUNS) must be inserted into the FORTRAN object file
 to force the loader to resolve the symbol LIOUNS from the
 low-core symbol table.

 326 LIOUNITS

 MTS 3: System Subroutine Descriptions

 April 1981

 LOAD, LOADF ___________

 Subroutine Description

 Purpose: To effect the dynamic loading of a program.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL LOAD,(input,info,switch,rtnlist,output,
 lsw,gtsp,frsp,pnt)

 FORTRAN: indx = LOADF(input,info,switch,rtnlist,output,
 lsw,gtsp,frsp,pnt)

 Parameters:

 input is the location of an input specifier to be _____
 used during loading to read loader records.
 An input specifier may be one of the
 following:

 (1) an FDname terminated by a blank.
 (2) a FDUB-pointer (as returned by GETFD).
 (3) an 8-character logical I/O unit name,
 left-justified with trailing blanks. In
 this case, bit 8 in info must be 1. ____
 (4) a fullword-integer logical I/O unit num-
 ber (0-99).
 (5) the address of an input subroutine to be
 called during loading via a READ sub-
 routine calling sequence to read loader
 records (i.e., the input subroutine is
 called with a parameter list identical
 to the system subroutine READ). In this
 case, bit 9 in info must be 1. ____

 info is the location of an optional information ____
 vector. No information is passed if info is ____
 0 or if info is the location of a fullword ____
 integer 0. The format of the information
 vector is as follows:

 (1) a halfword of load control bits defined
 as follows:

 bit 0: 1, if rtnlist is to be ignored. _______
 bit 1: 1, if output is specified. ______
 bit 2: 1, if lsw is specified. ___

 LOAD, LOADF 327

 MTS 3: System Subroutine Descriptions

 April 1981

 bit 3: 1, if gtsp is specified. ____
 bit 4: 1, if frsp is specified. ____
 bit 5: 1, if pnt is specified. ___
 bit 6: 1, if to suppress search of
 LIBSRCH/*LIBRARY libraries.
 bit 7: 0, unused (must be zero)
 bit 8: 1, if input is the location of _____
 a logical I/O unit name.
 bit 9: 1, if input is the location of _____
 an input subroutine address.
 bit 10: 1, if output is the location of ______
 a logical I/O unit name.
 bit 11: 1, if output is the location of ______
 an output subroutine
 address.
 bit 12: 1, if the program to be loaded
 is to be merged with the
 program previously loaded.
 bit 13: 1, to suppress prompting at a
 terminal.
 bit 14: 1, to force allocation of a new
 loader symbol table.
 bit 15: 0

 (2) a halfword count of the number of
 entries in the following initial ESD
 list.
 (3) a variable-length initial ESD list, each
 entry of which consists of a fullword-
 aligned 8-character symbol followed by a
 fullword value.

 switch is the location of a fullword of load control ______
 bits defined as follows:

 bits 0-7: the storage index number to be
 used if bit 29 or 30 is 1; else,
 optionally, the number of the
 segment into which the program is
 to be loaded.
 bit 8: 1, if rtnlist is to be ignored. _______
 bit 9: 1, if output is specified. ______
 bit 10: 1, if lsw is specified. ___
 bit 11: 1, if gtsp is specified. ____
 bit 12: 1, if frsp is specified. ____
 bit 13: 1, if pnt is specified. ___
 bits 14-19: 0
 bit 20: 1, if input is the location of a _____
 logical I/O unit name.
 bit 21: 1, if input is the location of an _____
 input subroutine address.
 bit 22: 1, if output is the location of a ______
 logical I/O unit name.

 328 LOAD, LOADF

 MTS 3: System Subroutine Descriptions

 April 1981

 bit 23: 1, if output is the location of an ______
 output subroutine address.
 bit 24: 0
 bit 25: 1, if the program to be loaded is to
 be merged with those previously
 loaded.
 bit 26: 1, to return if a loading error
 occurs.
 0, to call MTS if a loading error
 occurs.
 bit 27: 1, to suppress prompting at a
 terminal.
 bit 28: 1, to force allocation of a new
 loader symbol table.
 bit 29: 1, to load using the storage index
 number specified in bits 0-7.
 bit 30: 1, load into system storage (bits
 0-7 contain the storage index
 number to be used). This bit is
 only valid for systems programs.
 bit 31: 0, load at the highest link level;
 1, load at the current link level.

 rtnlist is either 0 or the address of an area into _______
 which the loader will place an ESD list of
 all the symbols in the loader symbol table.

 output (optional) is the location of a output speci- ______
 fier to be used during loading to produce
 loader output (error messages, map, etc.).
 If bit 1 of info is 0 (the default), the ____
 output parameter is ignored and all loader ______
 output is written on the MAP=FDname specified
 on the initial $RUN command. An output
 specifier may be one of the following:

 (1) an FDname terminated by a blank.
 (2) a FDUB-pointer (as returned by GETFD).
 (3) an 8-character logical I/O unit name,
 left-justified with trailing blanks. In
 this case, bit 10 of info must be 1. ____
 (4) a fullword-integer logical I/O unit num-
 ber (0-99).
 (5) the address of an output subroutine to
 be called during loading via the SPRINT
 subroutine calling sequence to write
 loader output (i.e., the output sub-
 routine is called with a parameter list
 identical to the system subroutine
 SPRINT). In this case, bit 11 of info ____
 must be 1.

 LOAD, LOADF 329

 MTS 3: System Subroutine Descriptions

 April 1981

 lsw (optional) is the location of a fullword of ___
 loader control bits. If bit 2 of info is 0 ____
 (the default), the lsw parameter is ignored ___
 and the global MTS settings are used. The
 loader control bits are defined as follows:

 bits 0-23: 0
 bit 24: 1, to suppress the pseudo-register
 map.
 bit 25: 1, to suppress the predefined symbol
 map.
 bit 26: 1, to print undefined symbols.
 bit 27: 1, to print references to undefined
 symbols.
 bit 28: 1, to print references to all exter-
 nal symbols.
 bit 29: 1, to print dotted lines around the
 loader map.
 bit 30: 1, to print a map.
 bit 31: 1, to print nonfatal error messages.

 gtsp (optional) is the location of a storage ____
 allocation subroutine to be called during
 loading via a GETSPACE calling sequence to
 allocate loader work space and program stor-
 age. If bit 3 of info is zero (the default), ____
 GETSPACE is used.

 frsp (optional) is the location of a storage ____
 deallocation subroutine to be called during
 loading via a FREESPAC calling sequence to
 release loader work space. If bit 4 of info ____
 is 0 (the default), FREESPAC is used.

 pnt (optional) is the location of a direct access ___
 subroutine to be called during loading via a
 POINT calling sequence while processing
 libraries in sequential files. If bit 5 of
 info is 0 (the default), POINT is used. ____

 Values Returned:

 LOAD: If loading was successful,

 GR15 contains the loader-defined entry point,
 GR0 contains the storage index number used.

 If a loading error occurred,

 GR15 contains zero,
 GR0 contains the loader status word, and
 GR1 contains the error code:

 330 LOAD, LOADF

 MTS 3: System Subroutine Descriptions

 April 1981

 0: Attempt to load a null program.
 4: Fatal loading error (bad object program).
 8: Undefined symbols referenced by the loaded
 program.
 12: No available storage index numbers.
 16: Loading aborted by attention interrupt.
 This error code will be returned only if
 bits 26 and 27 of switch are set on a call ______
 to LOAD.

 LOADF: If loading was successful, a positive INTEGER*4
 storage index number is returned as the value of
 LOADF. This number is used to uniquely identify
 the dynamically loaded program on subsequent calls
 to STARTF and UNLDF.

 If a loading error occurred, a negative INTEGER*4
 error code is returned as the value of LOADF, and
 is defined as follows:

 -1: Attempt to load a null program.
 -2: Fatal loading error (bad object program).
 -3: Undefined symbols referenced by the loaded
 program.
 -4: No available storage index numbers.
 -5: Loading aborted by attention interrupt.
 This error code will be returned only if
 bits 26 and 27 of switch are set on a call ______
 to LOADF.

 Description: LOAD provides a method for dynamically loading a program.
 LOAD provides this facility as follows:

 (1) The loader is called to dynamically load the
 specified program using input, info, output, lsw, _____ ____ ______ ___
 gtsp, frsp, and pnt if specified. ____ ____ ___
 (2) LOAD returns to the calling program with the
 return values described above.

 Note that LOAD accepts a variable-length parameter list of
 4 to 9 arguments. For most applications, only the first 4
 are required. Both info and switch contain load control ____ ______
 bits, some of which are duplicates. In these cases, LOAD
 and LOADF produce a single control bit by ORing the two
 together.

 FORTRAN programs (or programs that use the FORTRAN I/O
 library) that dynamically load other FORTRAN programs (or
 programs using the FORTRAN I/O library) should use the
 alternate entry point LOADF. LOADF is required to provide
 the dynamically loaded program with a FORTRAN I/O environ-
 ment consistent with the "merge" bit specified in info. ____
 If the "merge" bit is one, the dynamically loaded program

 LOAD, LOADF 331

 MTS 3: System Subroutine Descriptions

 April 1981

 will have the same I/O environment as the calling program.
 If the "merge" bit is zero, the dynamically loaded program
 will have a separate, reinitialized I/O environment. Both
 FORTRAN main programs and subroutines can be dynamically
 loaded using LOADF. However, the effect of executing a
 STOP statement from a dynamically loaded subroutine will
 depend on the setting of the "merge" bit. If the "merge"
 bit is 1, a return is made to the calling program; if the
 "merge" bit is 0, a return is made to MTS. LOADF returns
 an INTEGER*4 storage index number used to uniquely identi-
 fy the dynamically loaded program on subsequent calls to
 STARTF and UNLDF.

 Because the rate structure for usage of MTS includes a
 charge for allocated virtual memory integrated over CPU
 time, the cost of running a large software package in MTS
 can often be reduced by dynamically loading and executing
 seldom-used subroutines via a call to LOAD. Such savings
 in the storage integral must be weighed against the
 additional CPU time required to open a second file,
 reinvoke the loader, and rescan the required libraries.

 The user also should see the sections "The Dynamic Loader"
 and "Virtual Memory Management" in MTS Volume 5, System ______
 Services. In particular, they describe the use of initial ________
 ESD lists, merging with previously loaded programs, and
 the relationship between LOAD, LINK, and XCTL storage
 management.

 Examples: Assembly: CALL LOAD,(NAME,INFO,SWIT,0)
 .
 .
 INPUT STM 14,12,12(13)
 .
 .
 NAME DC C’*LIBRARY ’
 INFO DS 0F
 DC XL2’0’,H’2’
 DC CL8’SPRINT ’,A(INPUT)
 DC CL8’PLOT1’,F’0’
 SWIT DC F’0’

 The above example will load the modules defining PLOT1
 from *LIBRARY and will intercept any calls they make to
 SPRINT. An initial ESD list entry with a value of zero is
 interpreted as a request to include that symbol in the
 loader tables as referenced, but not defined. Note that
 the value returned by register 15 is the entry point of
 the modules loaded which may or may not be PLOT1. To get
 the address of PLOT1, the LOADINFO subroutine may be
 called, or the "return ESD list" parameter may be speci-
 fied on the call to LOAD.

 332 LOAD, LOADF

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: LOGICAL*1 PAR(8)
 DATA PAR/’H’,’I’,’ ’,’T’,’H’,’E’,’R’,’E’/
 INTEGER SWITCH/Z00800040/
 INTEGER*2 LPAR(5)/8/
 EQUIVALENCE (LPAR(2),PAR)
 ID = LOADF(’FORTOBJ ’,0,SWITCH,0)
 CALL STARTF(ID,LPAR)
 CALL UNLDF(0,ID,0)

 The above FORTRAN program dynamically loads the program in
 the file FORTOBJ at the highest link level with the
 "merge" bit set to 1. Subsequently, the loaded program is
 executed via a call to STARTF and unloaded via a call to
 UNLDF.

 LOAD, LOADF 333

 MTS 3: System Subroutine Descriptions

 April 1981

 334 LOAD, LOADF

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 LOADINFO ________

 Subroutine Description

 Purpose: To return information about an external symbol or a
 virtual memory address.

 Location: Resident System

 Alt. Entry: LDINFO

 Calling Sequences:

 Assembly: CALL LOADINFO,(type,item,bitsout,regout)

 Parameters:

 type is the location of a fullword-integer type ____
 code:
 0 = item parameter specifies a fullword- ____
 integer ESDID (external symbol dic-
 tionary ID).
 1 = item parameter specifies the name of an ____
 external symbol.
 2 = item parameter specifies a virtual ____
 memory address.
 3 = item parameter specifies a fullword- ____
 integer index.
 4 = item parameter specifies a two fullword- ____
 integer RLD (relocation dictionary)
 index vector, N and M.
| 11 = item parameter specifies a long-symbol- ____
| name area.
| 13 = item parameter specifies a fullword in- ____
| teger index.
| 15 = item parameter specifies the name of an ____
| external symbol.
 If 256 is added to the type code, information ____
 is returned from the system loader tables
 instead of from the loader table used to load
 the current user program, e.g., type=257 may ____
 be used to obtain loader information for the
 system symbol name specified by item. ____
 item is either the location of a fullword-integer ____
 ESDID of a symbol, the location of an
 8-character external symbol (left-justified
 with trailing blanks), the location of a
 fullword virtual memory address, the location
 of a fullword integer index, or the location
 of a two fullword-integer index vector, N and
 M.

 LOADINFO 335

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

| item can also be a long-symbol-name area. ____
| This area consists of three halfwords fol-
| lowed by eight or more characters. The first
| halfword is the length of the character area,
| the second halfword is the returned length of
| a symbol, and the third length is the actual
| length of the symbol (which may be longer if
| the symbol does not fit in the area). A
| sample area might look like the following:
|
| MAXLEN DC H’100’ Length of area
| RETLEN DS H Returned length
| SYMLEN DS H Actual symbol length
| SYMBOL DS CL100 Symbol
|
 bitsout is the location of a fullword into which _______
 LOADINFO will put output code bits or if the
 type parameter is 4, the address of a full- ____
 word into which LOADINFO will place the flag
 byte of the RLD item specified by the item ____
 parameters N and M.
 regout is either the location of a region of 20 ______
 fullwords into which LOADINFO will put infor-
 mation about the symbol or virtual memory
 address or if the type parameter is 4, a ____
 fullword into which LOADINFO will place the
 relocated address of the RLD item specified
 by the item parameters N and M. This region ____
 is cleared to zeros by LOADINFO before infor-
| mation is inserted. If the type parameter is ____
| 15, this area must be a long-symbol-name
| area, with the maximum length filled in
| properly.

 Return Codes:

 0 Successful return.
 4 Symbol or csect not found in loader tables.
 8 Loader tables are not available.
 12 Illegal parameter.

 Description: The global switch SYMTAB must be ON for this subroutine to
 return information about the current user program.

 For a type 0 call, information for the symbol of the
 specified ESDID is returned only if the ESDID is currently
 in the loader ESDID table. This table is available for a
 particular module only while the loader is reading the
 module; the table is no longer available after the END
 record is read.

 For a type 1 call, the loader tables are searched for the
 symbol specified.

 336 LOADINFO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 For a type 2 call, the loader tables are searched for
 information about the control section containing the
 specified virtual memory address.

 The type 3 call can be used to return all the information
 in the loader tables as follows: If the index specified
 is negative, LOADINFO replaces it with the number of
 entries in the loader tables. If the index is nonnega-
 tive, LOADINFO will return the (n+1)th entry in the loader
 tables and increment the index by 1. Thus, by setting the
 index initially to zero, and then calling LOADINFO repeat-
 edly until a nonzero return code is detected, all the
 information in the loader tables can be accessed.

 The type 4 call can be used to return all the relocation
 dictionary information in the loader tables as follows:
 The item parameter is a two fullword-integer vector of ____
 indices, N and M, where the (M+1)th RLD item for the Nth
 symbol table entry will be returned in bitsout and regout. _______ ______
 The bitsout parameter will contain the RLD flag byte _______
 (TTTTLLST) in bits 24-31 of the fullword and the regout ______
 parameter will contain the relocated address in bits 8-31
 of the fullword. The index M, which must be zero on the
 first call, will be incremented by one on each call.
 Thus, by setting M initially to zero and then by calling
 LOADINFO repeatedly until a nonzero return code is
 detected, all the relocation information for the Nth
 symbol table entry can be accessed. A type 4 call to
 LOADINFO can only be used in conjunction with a type 3
 call, i.e., a type 3 call must first by made to access the
 Nth symbol table entry before the type 4 calls are made to
 serially access the RLD information. Normally, RLD infor-
 mation is retained for intermodule references (i.e., for
 RLD items whose position pointer is not the same as the
 relocation pointer) and only if the program was loaded
 under control of the symbolic debugging system (SDS).

| A type 11 call is similar to a type 1 call, except that a
| long-symbol-name area is expected as the item rather than ____
| an 8-character external symbol name. The full symbol is
| expected, so the actual length (SYMLEN) is used to
| determine the length of the symbol.
|
| A type 13 call is similar to a type 3 call, except that
| only long-symbol-name entries are returned. A type 3 call
| returns all entries, including long-symbol-name entries.
|
| A type 15 call is used to find the actual name of a
| long-symbol name. As long-symbol names will not fit into
| the 8 characters reserved for the external symbol name in
| the regout area, a unique 8-character identifier is put ______
| there instead. The first fullword of this identifier is a

 LOADINFO 337

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

| fullword X’FFFFFFFF’. The type 15 call returns the full
| long-symbol name given this unique identifier.
|
| LOADINFO returns the information for type 0-3, 11, and 13
 calls as follows: The bitsout word indicates which pieces _______
 of information have been filled in the region regout. ______
 Each bit corresponds to a piece of information. If the
 bit is set, the corresponding information is given. The
 bit number and the equivalent integer value of the bit are
 given as the first two columns in the table below. The
 third column indicates the displacement (in bytes) from
 the beginning of regout for the particular piece of ______
 information.

 Bitsout Regout _______ ______
 Bit Value Displ Contents ___ _____ _____ ________

 31 1 0 External symbol name (left-justified
| with trailing blanks) or unique long-
| symbol identifier (see type 15 call).
 30 2 8 Address assigned to the symbol.
 29 4 12 Relocation factor if csect or common
 section.
 28 8 16 Length if a csect or common section.
 27 16 20 Storage index number.
 26 32 24 Symbol type:
 0=Undefined symbol
 1=Entry point
 2=Control section
 3=Common section
 4=Predefined
 5=Library entry point
 6=Library control section
 7=Library common section
 25 64 28 Pseudo-register displacement
 24 128 32 Pseudo-register length
 23 256 36 Pseudo-register storage index number
 22 512 40 Name of the closest entry with a
 virtual memory address equal to or
 less than the given address
 21 1024 48 Address assigned to the entry named
 above.
 20 2048 52 Loader-assigned internal name for
 private control section.
 56-79 Reserved for future expansion.

| The regout area for type 0-3, 11, and 13 calls can be ______
 represented in assembler language with the following dsect
 (which is available in the public file *LOADINFODSECT).

 338 LOADINFO

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 INFOAREA DSECT
 SYMNAME DS CL8 SYMBOL/CSECT NAME
 SYMADDR DS A ASSIGNED VM ADDRESS
 SYMRF DS A RELOCATION FACTOR
 SYMLEN DS F LENGTH IF CSECT OR COMMON SECTION
 SYMSIN DS F STORAGE INDEX NUMBER
 SYMTYPE DS F TYPE INFORMATION
 PRADDR DS A ASSIGNED PSEUDO-REG DISPLACEMENT
 PRLEN DS F LENGTH OF PSEUDO-REGISTER
 PRSIN DS F PSEUDO-REG STORAGE INDEX NUMBER
 EPNAME DS CL8 CLOSEST ENTRY POINT NAME
 EPADDR DS A VM ADDRESS OF ABOVE ENTRY POINT
 PCID DS F PRIVATE CONTROL SECTION ID
 DS 6F RESERVED FOR FUTURE EXPANSION

 If LOADINFO is called with a blank external symbol, it
 will look only for blank-named common sections and will
 fail if there are none (even though there may be blank-
 named control sections). If LOADINFO is called with an
 external symbol which has been defined at several link
 levels, it will return the most recent definition.

 Examples: FORTRAN: INTEGER*4 TYPE,BITS,REG(20)
 DATA TYPE/1/
 CALL LDINFO(TYPE,’PLOT1 ’,BITS,REG,&98,&99)

 The above example calls LOADINFO to get information about
 the symbol PLOT1.

 Assembly: LOOP CALL LOADINFO,(TYPE,ITEM,BITS,REG)
 LTR 15,15
 BNZ DONE
 .
 .
 B LOOP
 .
 .
 TYPE DC F’3’
 ITEM DC F’0’
 BITS DS XL4
 REG DS 20A

 This example calls LOADINFO repeatedly to get information
 about each symbol in the loader tables. The loop is done
 when LOADINFO gives a nonzero return code.

 LOADINFO 338.1

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 338.2 LOADINFO

 MTS 3: System Subroutine Descriptions

 April 1981

 LOCK ____

 Subroutine Description

 Purpose: To request that a file be locked in the indicated manner,
 i.e., to dynamically restrict access to a file which has
 been permitted to be shared by others.

 Location: Resident System

 Alt. Entry: SETLCK

 Calling Sequence:

 Assembly: CALL LOCK,(unit,howflg,wtflg)

 FORTRAN: CALL LOCK(unit,howflg,wtflg,&rc4,&rc8,&rc12,
 &rc16,&rc20)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 howflg is the location of a fullword indicating how ______
 to lock the file:
 >0 lock for read
 =0 lock for modification (write, empty,
 truncate, etc.)
 <0 lock for destroy (rename, permit)
 wtflg is the location of a fullword indicating _____
 whether or not to wait if the requested
 locking is not possible at this time:
 <0 wait indefinitely
 =0 do not wait
 >0 the maximum number of milliseconds to
 wait. If this expires and the file has
 not been locked, a return code of 20 will
 be given.
 rc4...rc20 are statement labels to transfer to if the __________
 corresponding return codes occur.

 Return Codes:

 0 The file has been locked in the requested manner.
 4 The file does not exist.

 LOCK 339

 MTS 3: System Subroutine Descriptions

 April 1981

 8 Hardware error or software inconsistency
 encountered.
 12 Access appropriate to the locking request not
 allowed.
 16 Locking the file as requested will result in a
 deadlock.
 20 Locking the file as requested can not be accom-
 plished at this time, no wait was requested, or
 the wait was interrupted.

 Notes:

 Any number of jobs can have a file locked for reading
 at any given time, but only one job can have a file
 locked for modification at any given time and then
 only if no job has the file locked for reading, or
 locked for destroying. Only one job can have a file
 locked for destroying at any given time, and then if
 no job has the file open or locked for reading, or
 locked for modification.

 The three locking levels are inclusive in the sense
 that locking a file for modification also locks the
 file for reading and locking a file for destroying
 also locks the file for modification and reading.

 The file is always locked as requested in the case __ ______
 where there is only one FDUB with a locking request
 on the file within a job. Thus, if a file is already ______
 locked for modification via a particular FDUB and it
 is requested, via the same FDUB, that the file be
 locked for reading, the file will be essentially
 unlocked for modification and left locked for
 reading.

 If more than one FDUB within a job has a locking ______
 request on the file, the file will be locked at the
 level of the highest request.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt exit
 (by calling the ATTNTRP subroutine). Following a
 $RESTART command or a return to the point of inter-
 ruption from the attention exit, a return is made
 from LOCK with a return code of 20.

 Description: See Appendix D of the section "Files and Devices" in MTS
 Volume 1, The Michigan Terminal System, for details _______________________________
 concerning concurrent use of shared files.

 340 LOCK

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL LOCK,(UNIT,HOW,WAIT)
 .
 .
 UNIT DC F’6’ Logical I/O unit 6
 HOW DC F’0’ Lock for modification
 WAIT DC F’-1’ Wait indefinitely

 FORTRAN: INTEGER*4 UNIT
 DATA UNIT/6/
 ...
 CALL LOCK(UNIT,0,-1)

 The above examples will lock the file attached to logical
 I/O unit 6 for modification and wait indefinitely if
 someone else has the file locked (in any manner).

 LOCK 341

 MTS 3: System Subroutine Descriptions

 April 1981

 342 LOCK

 MTS 3: System Subroutine Descriptions

 April 1981

 LODMAP ______

 Subroutine Description

 Purpose: To produce a loader map from the current contents of the
 loader tables.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL LODMAP,(unit,bits)

 FORTRAN: CALL LODMAP(unit,bits)

 Parameters:

 unit is the location of either ____
 (a) a FDUB-pointer (as returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SPRINT).
 This specifies where the loader map is to be
 written.
 bits is the location of a fullword of switches ____
 defined as follows:

 bits 0-23: zero
 bit 24: one to suppress pseudo-registers
 25: one to suppress predefined symbols
 26: one to print undefined symbols
 27: one to print undefined xrefs
 28: zero
 29: one to print dotted lines
 30: one to print entry point names
 31: zero

 Return Codes:

 0 Successful return.
 4 Illegal unit parameter specified. ____
 8 Loader tables not available.

 Description: The current contents of the loader tables will be used to
 produce a loader map under the control of the switches
 specified. If the global SYMTAB switch is OFF, the loader
 tables will not be available, generating a return code of
 8.

 LODMAP 343

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL LODMAP,(UNIT,BITS)
 LTR 15,15
 BNZ NOMAP
 .
 .
 DS 0F
 BITS DC XL3’0’,X’C6’
 UNIT DC CL8’SERCOM’

 This example will produce a partial loader map on the
 logical I/O unit SERCOM.

 FORTRAN: INTEGER UNIT/2/,BITS/6/
 ...
 CALL LODMAP(UNIT,BITS,&98,&99)

 This example will produce a loader map with dotted lines
 on logical I/O unit 2.

 344 LODMAP

 MTS 3: System Subroutine Descriptions

 April 1981

 Logical Operators _________________

 Subroutine Description

 Purpose: To make the following System/360/370 machine instructions
 directly available to the FORTRAN user: MVC, CLC, NC, OC,
 XC, TR, TRT, ED, and EDMK.

 Location: *LIBRARY

 Entry Points: IMVC, ICLC, INC, IOC, IXC, ITR, ITRT, IED, and IEDMK.

 Calling Sequences:

 FORTRAN: I = IMVC(len,base1,displ1,base2,displ2)
 I = ICLC(len,base1,displ1,base2,displ2)
 I = INC(len,base1,displ1,base2,displ2)
 I = IOC(len,base1,displ1,base2,displ2)
 I = IXC(len,base1,displ1,base2,displ2)
 I = ITR(len,base1,displ1,base2,displ2)
 I = ITRT(len,base1,displ1,base2,displ2,dr,fb)
 I = IED(len,base1,displ1,base2,displ2)
 I = IEDMK(len,base1,displ1,base2,displ2,dr)

 Parameters:

 len is the integer length in bytes. No restric- ___
 tion is placed on the size of len. An error ___
 message will be generated if len < 0; or, for ___
 the entries IED or IEDMK, if len > 256. ___
 base1 is the base location of the first operand. _____
 displ1 is the integer displacement in bytes for the ______
 first operand. No restriction is placed on
 the size of displ1. ______
 base2 is the base location of the second operand. _____
 displ2 is the integer displacement in bytes for the ______
 second operand. No restriction is placed on
 the size of displ2. ______
 dr is an integer return parameter for ITRT and __
 IEDMK only. For ITRT, dr will contain the __
 displacement in bytes from the beginning of
 the argument list, (base1+displ1), to the _____ ______
 argument corresponding to the first nonzero
 function byte (if any). For IEDMK, dr will __
 contain the displacement in bytes from the
 beginning of the source, (base2+displ2), to _____ ______
 the result character, whenever the latter is
 a zoned source digit and the significance
 indicator was off before the examination. In
 both cases, dr will be set to zero if the __

 Logical Operators 345

 MTS 3: System Subroutine Descriptions

 April 1981

 resulting condition code is zero.
 fb is an optional integer return parameter for __
 ITRT. When a nonzero function byte is found,
 it will be returned in fb as an integer in __
 the range (0,255); otherwise, fb will be __
 zero.

 Description: For the description of the machine instructions, see the
 IBM publication, IBM System/370 Principles of Operation, __
 form GA22-7000. These subroutines are coded as integer-
 valued functions with the resulting condition code (0, 1,
 or 2) as the value.

 In the abbreviated descriptions below, the first operand
 consists of len bytes beginning at location base1+displ1, ___ _____ ______
 and the second operand consists of len bytes beginning at ___
 location base2+displ2. These two operands may overlap in _____ ______
 any manner. For all five of these entry points, proces-
 sing is carried out left to right one byte at a time.
 Note that the result of performing an operation on the
 first bytes of the two operands is stored before the
 second bytes are fetched so that overlap can have a
 significant effect on the result.

 IMVC - Move the second operand into the first operand
 location.
 INC - Replace the first operand by the logical product
 (AND) of the operands.
 IOC - Replace the first operand by the logical sum (OR)
 of the operands.
 IXC - Replace the first operand by the modulo-two sum
 (exclusive OR) of the two operands.
 ICLC - Compare the two operands. The operation is termi-
 nated as soon as two unequal bytes are found.

 The result of an IMVC is always zero. The result of an
 INC, IOC, or IXC is zero if the result operand is zero,
 and one, otherwise. The result of an ICLC is 0, 1, or 2,
 depending on whether the first operand is equal to, less
 than, or greater than the second operand.

 For the ITR and ITRT entries, the first operand consists
 of len bytes beginning at location base1+displ1, and the ___ _____ ______
 second operand consists of a 256-byte function table
 beginning at location base2+displ2. These operands may _____ ______
 overlap, but probably not too fruitfully. The ITR entry
 translates each byte of the first operand by replacing it
 with the corresponding byte from the function table. The
 result of an ITR operation is always zero. The ITRT entry
 does not change either operand. Processing the first
 operand bytes left to right, the corresponding function
 byte is interrogated. If the function byte is zero, the
 processing of the first operand continues. If the func-

 346 Logical Operators

 MTS 3: System Subroutine Descriptions

 April 1981

 tion byte is nonzero, the operation is terminated. When
 terminated, processing is terminated with the byte at
 location base1+displ1+dr, and the corresponding nonzero _____ ______ __
 function byte is available in fb. The result of the ITRT __
 will be 1 if this byte is not the last byte of the first
 operand, and 2 if it is the last byte. If no nonzero
 function byte is encountered, the result of an ITRT will
 be zero, and dr and fb will be indeterminate. __ __

 The complexity of the IED and IEDMK instructions precludes
 any short descriptions here.

 Examples: INTEGER A, B
 B = 31
 LEN = 4
 IR = INC(LEN,A,0,B,0)

 The logical AND product of A and B will replace A. In
 this case, B = 31, so A will be replaced by (A mod 32).
 IR will be set to 0 or 1 depending on whether the result
 in A is zero or nonzero.

 INTEGER A(4),B(4),D1,D2
 READ 2, (A(I),I=1,4), (B(I),I=1,4)
 2 FORMAT(4A4)
 D1 = 8
 D2 = 0
 IR = ICLC(8,A,D1,B,D2)

 This program logically compares the string in A(3), A(4),
 to the string in B(1), B(2). IR will be set to 0, 1, or 2
 depending on whether the first string is equal to, less
 than, or greater than the second string.

 Logical Operators 347

 MTS 3: System Subroutine Descriptions

 April 1981

 348 Logical Operators

 MTS 3: System Subroutine Descriptions

 April 1981

 LSFILE ______

 Subroutine Description

 Purpose: To allow the user to obtain information about the locking
 status of a file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL LSFILE,(file,filter,length,icount,needed,
 lsinfo)

 FORTRAN: CALL LSFILE(file,filter,length,icount,needed,
 lsinfo,&rc4,&rc8,&rc12,&rc16)

 Parameters:

 file is the location of a region containing a ____
 left-justified filename with a trailing blank
 for which locking information is being
 requested.
 filter is the location of a fullword of bit switches ______
 which are used for filtering the information
 to be returned. Lock information will only
 be returned for those tasks whose lock status
 includes at least one item specified by a ’1’
 bit in filter. Bits 0-21 in filter are ______ ______
 unused and must be 0.

 Bit Hex Value Lock Status ___ _________ ___________

 22 00000200 File is not open/not locked.
 23 00000100 File buffers are invalid.
 24 00000080 Waiting to destroy the file.
 25 00000040 Waiting to modify the file.
 26 00000020 Waiting to read the file.
 27 00000010 Waiting to open the file.
 28 00000008 File locked for destroy.
 29 00000004 File locked for modify.
 30 00000002 File locked for read.
 31 00000001 File is open.

 Note: $LOCKSTATUS uses a filter value of ______
 ’000003FF’ (1023) when calling LSFILE.

 length is a fullword location specifying the size of ______
 lsinfo in bytes. ______
 icount is an integer variable which will be set to ______

 LSFILE 348.1

 MTS 3: System Subroutine Descriptions

 April 1981

 the number of locking status records returned
 by LSFILE.
 needed is an integer variable which will be set to ______
 the number of bytes actually needed by LSFILE
 to return all requested locking status
 information.
 lsinfo is the user-provided area in which locking ______
 status information is returned in the form of
 two-fullword (eight-byte) records. The first
 fullword contains the lock state of the file
 in the same format used by filter. The ______
 second fullword is the task number for the
 job with the file locked. The records are
 stored contiguously beginning at the first
 byte of lsinfo, the number of records present ______
 being indicated by icount. ______
 rc4,...,rc16 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 All available lock information was returned.
 4 No lock information was found for this file.
 8 More space was needed than provided to return all
 lock information. Only as many records as would
 fit into length bytes were returned. ______
 12 Illegal or invalid parameters.
 16 System Error.

 Description: If the return code from LSFILE is 12 or 16, no value for
 needed is returned, and lsinfo remains unchanged. A zero ______ ______
 value is returned for icount. ______

 A filter value of hex ’000003FF’ (decimal 1023) causes all ______
 available locking status information to be returned.

 Example: Assembly: CALL LSFILE,(FILENAME,FILTER,REGLEN,
 COUNT,NEEDED,REGION)
 .
 .
 FILENAME DC C’MYFILE ’
 FILTER DC X’000003FF’
 REGLEN DC F’400’
 COUNT DS F
 NEEDED DS F
 REGION DS 400CL1

 FORTRAN: INTEGER*4 FILENME(2)/’MYFI’,’LE ’/,
 1 REGLEN/400/,FILTER/Z000003FF/,COUNT,
 2 NEEDED,REGION(100)
 CALL LSFILE(FILENAME,FILTER,REGLEN,COUNT,
 1 NEEDED,REGION,&10,&20,&30,&40)

 348.2 LSFILE

 MTS 3: System Subroutine Descriptions

 April 1981

 The above examples obtain lock status information for the
 file MYFILE and place the information into the 400-byte
 area REGION.

 LSFILE 348.3

 MTS 3: System Subroutine Descriptions

 April 1981

 348.4 LSFILE

 MTS 3: System Subroutine Descriptions

 April 1981

 LSTASK ______

 Subroutine Description

 Purpose: To allow the user to obtain information about the locking
 status of files by a given task.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL LSTASK,(task,filter,length,icount,needed,
 lsinfo)

 FORTRAN: CALL LSTASK(task,filter,length,icount,needed,
 lsinfo,&rc4,&rc8,&rc12,&rc16)

 Parameters:

 task is the location of a fullword region contain- ____
 ing the task number for which locking infor-
 mation is being requested.
 filter is the location of a fullword of bit switches ______
 which are used for filtering the information
 to be returned. Lock information will only
 be returned for those tasks whose lock status
 includes at least one item specified by a ’1’
 bit in filter. Bits 0-21 in filter are ______ ______
 unused and must be 0.

 Bit Hex Value Lock Status ___ _________ ___________

 22 00000200 File is not open/not locked.
 23 00000100 File buffers are invalid.
 24 00000080 Waiting to destroy the file.
 25 00000040 Waiting to modify the file.
 26 00000020 Waiting to read the file.
 27 00000010 Waiting to open the file.
 28 00000008 File locked for destroy.
 29 00000004 File locked for modify.
 30 00000002 File locked for read.
 31 00000001 File is open.

 Note: $LOCKSTATUS uses a filter value of ______
 ’000003FF’ (1023) when calling LSTASK.

 length is a fullword location specifying the size of ______
 lsinfo in bytes. ______
 icount is an integer variable which will be set to ______
 the number of locking status records returned

 LSTASK 348.5

 MTS 3: System Subroutine Descriptions

 April 1981

 by LSTASK.
 needed is an integer variable which will be set to ______
 the number of bytes actually needed by LSTASK
 to return all requested locking status
 information.
 lsinfo is the user-provided area in which locking ______
 status information is returned in the form of
 variable-length records, with each record
 formatted as follows. The first fullword
 contains the length of the record. The
 second fullword contains the lock state of
 the file in the same format used by filter. ______
 The third fullword contains the length of the
 returned file name. The remainder of the
 record is the name of a file which the task
 has locked. The file name is padded on the
 right to make the length divisible by 4,
 ensuring that records are fullword-aligned.
 The records are stored contiguously beginning
 at the first byte of lsinfo, the number of ______
 records present being indicated by icount. ______
 rc4,...,rc16 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 All available lock information was returned.
 4 No lock information was found for this task.
 8 More space was needed than provided to return all
 lock information. Only as many records as would
 fit into length bytes were returned. ______
 12 Illegal or invalid parameters.
 16 System Error.

 Description: If the return code from LSTASK is 12 or 16, no value for
 needed is returned, and lsinfo remains unchanged. A zero ______ ______
 value is returned for icount. ______

 A filter value of hex ’000003FF’ (decimal 1023) causes all ______
 available locking status information to be returned.

 Examples: Assembly: CALL GUINFO,(ITEM,TASKNUM)
 CALL LSTASK,(TASKNUM,FILTER,REGLEN,
 COUNT,NEEDED,REGION)
 .
 .
 ITEM DC CL8’TASKNBR ’
 TASKNUM DS F
 FILTER DC X’000003FF’
 REGLEN DC F’400’
 COUNT DS F
 NEEDED DS F

 348.6 LSTASK

 MTS 3: System Subroutine Descriptions

 April 1981

 REGION DS 400CL1
 END

 FORTRAN: INTEGER*4 TASKNUM,NEEDED,REGLEN/400/,
 1 FILTER/Z000003FF/,COUNT,NEEDED,
 2 REGION(100)
 CALL GUINFO(’TASKNBR ’,TASKNUM)
 CALL LSTASK(TASKNUM,FILTER,REGLEN,COUNT,
 1 NEEDED,REGION,&10,&20,&30,&40)

 The above examples obtain lock status information for the
 user’s current task (as determined by a call to GUINFO)
 and place the information into a 400-byte area REGION.

 LSTASK 348.7

 MTS 3: System Subroutine Descriptions

 April 1981

 348.8 LSTASK

 MTS 3: System Subroutine Descriptions

 April 1981

 MOUNT _____

 Subroutine Description

 Purpose: To mount magnetic and paper tapes, floppy disks, and
 connections on the Merit Computer Network.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL MOUNT,(mntreq,reqlen)

 CALL MOUNT,(par)

 CALL MOUNT,(numreq,string,len,option,ercode,
 errmsg),VL

 FORTRAN: CALL MOUNT(mntreq,reglen)

 CALL MOUNT(par)

 CALL MOUNT(numreq,string,len,option,ercode,
 errmsg)

 Parameters:

 mntreq is the location of a character string con- ______
 taining one or more mount requests, each
 separated by a semicolon.
 reqlen is the location of a halfword (INTEGER*2) ______
 length of mntreq. ______
 par is the location of a halfword (INTEGER*2) ___
 length of a character string immediately
 followed by that character string. The char-
 acter string contains one or more mount
 requests, each separated by a semicolon.
 numreq is the location of a fullword number of mount ______
 requests specified in string. ______
 string is the location of a character string con- ______
 taining numreq mount requests, each separated ______
 by a semicolon.
 len (optional) is the location of the total ___
 length of the mount request string, expressed ______
 as either a fullword (INTEGER*4) or a half-
 word (INTEGER*2). If the first two bytes
 specified are zero, it is assumed that len ___
 specifies a fullword integer. Otherwise, len ___
 is assumed to be a halfword. If len speci- ___
 fies a fullword zero or is omitted, the last

 MOUNT 349

 MTS 3: System Subroutine Descriptions

 April 1981

 mount request in string must be terminated by ______
 a semicolon.
 option (optional) is the location of a fullword ______
 containing mount control switches defined as
 follows:

 bits 0-15: must be zero.
 bit 16: 1, to suppress the echoing of mount
 requests.
 bit 17: 1, to suppress the printing of any
 error messages.
 bit 18: 1, to suppress the prompting of a
 terminal user for replacement of
 an erroneous mount request.
 bit 19: 1, to mount any request that can be
 fulfilled, even if other requests
 could not be. By default, the
 MOUNT subroutine will abort all
 requests if one or more are
 erroneous and cannot be
 fulfilled.
 bit 20: 1, to suppress verification of a
 successful mount.
 bit 21: 1, to suppress attention interrupts
 while processing the mount re-
 quests. If this bit is set, the
 user will not be able to inter-
 rupt the operator wait.
 bit 22: 1, to suppress the pseudodevice
 name/rack number prefix from
 error messages printed or return-
 ed by the MOUNT subroutine.
 bit 23: 1, to wait in the tape mount queue,
 if necessary, without prompting
 the terminal user. Bit 23 will
 be ignored if the mount request
 is issued from a batch job, or if
 bit 24 is set.
 bit 24: 1, to prohibit the request from
 being queued if there are not
 enough drives, without prompting
 the terminal user. A "busy" re-
 turn will be made by the MOUNT
 subroutine in this case. Bit 24
 will be ignored if the mount
 request is issued from a batch
 job.
 bits 25-31: must be zero.

 ercode (optional) is the location of a vector of ______
 numreq fullword integers in which the MOUNT ______
 subroutine will place an error number for
 each mount request if an error return (return

 350 MOUNT

 MTS 3: System Subroutine Descriptions

 April 1981

 code > 0) is made. This parameter should be
 dimensioned as INTEGER ERCODE(n), where "n"
 is greater than or equal to the number of
 mount requests numreq. ______

 Error numbers less than 100 indicate an error
 in the mechanics of the subroutine call or in
 the values of the parameters. Note that it
 may be impossible to return some of these
 error numbers if the appropriate parameters
 are not addressable.

 Number Message ______ _______

 1 Illegal "numreq" parameter.
 2 Illegal "string" parameter.
 3 Illegal "len" parameter.
 4 Illegal "option" parameter.
 5 Illegal "ercode" parameter.
 6 Illegal "errmsg" parameter.
 7 Missing "string" parameter.
 8 Missing "len" parameter.
 9 Invalid "option" bits specified.

 99 Request not processed.

 This error number is returned if a
 mount request was not processed
 because a previous request was
 aborted. This may occur if a termi-
 nal user entered "CANCEL" when
 prompted for replacement of an
 erroneous request.

 Error numbers between 100 and 199 indicate
 syntax errors in the mount request:

 100 Rack number was not given.
 101 Device type was not specified.
 102 Pseudodevice name was not given.
 103 Invalid pseudodevice name.
 104 Pseudodevice name too long.
 105 Invalid device type.
 106 Invalid rack number.
 107 Invalid block size.
 108 Invalid logical record length.
 109 Invalid keyword "xxx".
 110 Invalid expiration date.
 111 Invalid data set name.
 112 "xxx" has invalid syntax.
 113 Missing required prime field.
 114 EOR hex character count not between 1
 and 8.

 MOUNT 351

 MTS 3: System Subroutine Descriptions

 April 1981

 115 EOR field contains illegal hex
 character.
 116 Length of EOR hex field does not
 match count.
 120 POSN specifies an invalid track
 number.
 121 POSN specifies an invalid sector
 number.
 122 Invalid SECMAP sector number.
 123 SECMAP does not specify 26 sector
 numbers.

 Error numbers between 200 and 299 indicate
 semantic errors in the mount request:

 200 Read access not allowed to tape.
 201 Write access not allowed to tape
 (cannot mount tape with RING=IN).
 202 INIT=YES valid only for labeled tape
 with RING=IN.
 203 MODE=xxx is inconsistent with device
 type.
 204 MODE=xxx is not available on device
 "yyy".
 205 Not enough devices available to sat-
 isfy this request.
 206 Pseudodevice name already requested
 for "xxx".
 207 Pseudodevice name is in use by MTS.
 208 Pseudodevice name is already in use
 for device type "xxx".
 209 POOL is invalid for paper tape
 reader/punch.

 Error numbers between 300 and 399 indicate
 errors determined by the operator:

 300 System in unattended mode; no mounts
 allowed at this time.
 301 Mounts are temporarily disabled; try
 again later.
 302 Incorrect rack number.
 303 Incorrect tape id.
 304 All units busy at this time.
 305 Volume label is incorrect.
 306 Tape is not of specified mode.
 307 Permanent I/O error on first tape
 block.
 308 Volume name not given for labeled
 tape.
 309 Aborted by operator (reason given).
 310 Not available (reason given).
 311 Aborted (by user attention

 352 MOUNT

 MTS 3: System Subroutine Descriptions

 April 1981

 interrupt).
 312 Aborted (due to error in another
 request).

 Error numbers between 400 and 499 indicate
 errors from a control operation on the
 device.

 400 Initialization failed.
 401 Positioning failed.
 402 Return code 4 from CONTROL.
 403 Error message from CONTROL.

 450 Invalid host name
 451 Network path to host is shutdown
 452 No host ports of desired type exist
 453 Host is down
 454 No socket available in local PCP
 455 Invalid connection type
 456 Remote PCP/SCP is isolated from
 network
 457 No socket available in remote PCP/SCP
 458 No connections currently allowed to
 remote PCP/SCP
 459 Host does not accept surcharges
 460 Should not occur
 461 No more wraparound connections
 allowed
 462 Host ports are busy
 463 Should not occur
 464 Should not occur
 465 Should not occur
 466 Should not occur
 467 Should not occur
 468 Internal error in network DSR
 469 Network connections not allowed now
 470 Connection establishment interrupted
 471 Internal network error
 472 Internal network error
 473 Connection establishment interrupted
 474 Connection establishment interrupted
 475 Internal network error
 476 Network not responding

 Error numbers 500 and above indicate a system
 error and should not occur.

 The error number for a particular mount
 request will be zero if the tape or device
 was mounted successfully even if some other
 mount request had an error or was not
 fulfilled.

 MOUNT 353

 MTS 3: System Subroutine Descriptions

 April 1981

 errmsg (optional) is the location of a vector of ______
 numreq elements in which the MOUNT subroutine ______
 will place the corresponding error message if
 an error code > 0 is returned for a particu-
 lar mount request. Each element of the
 errmsg vector is 20 fullwords (80 characters) ______
 long. This parameter should be dimensioned
 as INTEGER*4 ERRMSG(20,n), LOGICAL*1 ERRMSG
 (80,n), etc., where "n" is greater than or
 equal to the number of mount requests numreq ______
 in string. The MOUNT subroutine will ini- ______
 tially clear this vector to blanks.

 Return codes:

 0 All requests were successfully processed.
 4 One or more of the requests could not be
 fulfilled.
 8 The operator or user caused one or more of the
 requests to be aborted.
 12 System error.
 16 Illegal parameter(s) in call to MOUNT.

 Notes:

 The MOUNT subroutine prints messages on the logical
 I/O unit SERCOM. MOUNT subroutine error messages can
 be suppressed by setting bit 17 of option to 1. The ______
 echoing of mount requests on SERCOM can be suppressed
 by setting bit 16 of option to 1, or by the MTS $SET ______
 ECHO=OFF command (or by calling the CUINFO subroutine
 for the ECHOOFF item to perform the equivalent
 function).

 Assembly language users wishing to omit the optional
 parameters len, option, ercode, or errmsg should ___ ______ ______ ______
 either follow the variable-length parameter list
 convention (high-order bit of the previous parameter
 adcon in the parameter list is 1) or else supply an
 adcon which is zero (rather than pointing to a zero).
 FORTRAN users should note that if an optional parame-
 ter is omitted, all parameters in the calling se-
 quence following the omitted parameter must also be
 omitted. For example, if ercode is omitted, errmsg ______ ______
 must also be omitted.

 Description: See the $MOUNT command description in MTS Volume 1, The ___
 Michigan Terminal System, for details on the form of a ________________________
 mount request. For a complete description of the avail-
 able mount parameters, see the appropriate sections in MTS
 Volume 19, Tapes and Floppy Disks. ______________________

 354 MOUNT

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL MOUNT,(STR,LEN),VL
 .
 .
 LEN DC H’28’
 STR DC C’POOL 9TP *T*;MNET *MSU* D=MS’

 FORTRAN: INTEGER SWS/Z00006000/,ERR(2)
 LOGICAL*1 MSG(80,2)
 ...
 CALL MOUNT(2,’POOL 9TP *T*;MNET *MSU* D=MS;’,
 0,SWS,ERR,MSG,&4,&8,&12,&16)

 The above examples call MOUNT to mount a 9-track pool tape
 with pseudodevice name *T* and a Merit connection to
 Michigan State University with pseudodevice name *MSU*.
 The FORTRAN example specifies the error code and message
 vectors in order to obtain more specific error return
 information. MOUNT option bits are specified to suppress
 printing of error messages and prompting of terminal
 users. Note also that the FORTRAN example specifies a
 length of zero for the len parameter, so the mount request ___
 string is terminated by a semicolon.

 MOUNT 354.1

 MTS 3: System Subroutine Descriptions

 April 1981

 354.2 MOUNT

 MTS 3: System Subroutine Descriptions

 April 1981

 MTS ___

 Subroutine Description

 Purpose: To suspend execution of a program and return to MTS
 command mode or to the previous command language sub-
 system. Issuing a $RESTART command will cause execution
 of the program to resume by causing a return from the MTS
 subroutine call.

 Location: Resident System

 Alt. Entry: MTS#

 Calling Sequences:

 Assembly: CALL MTS

 or

 MTS

 FORTRAN: CALL MTS

 Return Codes:

 None

 Note: The complete description for using the MTS macro
 is given in MTS Volume 14, 360/370 Assemblers in _______________________
 MTS. ___

 MTS 355

 MTS 3: System Subroutine Descriptions

 April 1981

 356 MTS

 MTS 3: System Subroutine Descriptions

 April 1981

 MTSCMD ______

 Subroutine Description

 Purpose: To suspend execution of a program, return to MTS command
 mode or to the previous command language subsystem, and
 feed a character string to the MTS command interpreter.

 Location: Resident System

 Alt. Entry: MTSCMD#

 Calling Sequence:

 Assembly: CALL MTSCMD,(locn,length)

 or

 MTSCMD locn[,length]

 FORTRAN: CALL MTSCMD(locn,length)

 Parameters:

 locn is the location of a character string con- ____
 taining a command.
 length is the location of the length of the charac- ______
 ter string expressed as either a fullword
 (INTEGER*4) or a halfword (INTEGER*2). If
 the first two bytes of length are zero, it is ______
 assumed length specifies a fullword integer. ______
 Otherwise, length is taken as halfword. ______

 Return codes:

 The subroutine does not return except as described
 below.

 Note: The complete description for using the MTSCMD
 macro is given in MTS Volume 14, 360/370 Assem- _______________
 blers in MTS. ____________

 Description: This subroutine returns to MTS, as does the subroutine
 MTS, but in addition gives it a character string to
 interpret as a command. If a $RESTART command is issued
 before the next $RUN, $RERUN, $LOAD, or $DEBUG command,
 the subroutine will "return," i.e., the program calling
 MTSCMD will restart following the subroutine call.

 MTSCMD 357

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: FORTRAN: CALL MTSCMD(’$RESTART SPRINT=*DUMMY* ’,24)

 Assembly: CALL MTSCMD,(INREG,INLEN)
 .
 .
 INREG DC C’$RESTART SPRINT=*DUMMY* ’
 INLEN DC F’24’

 MTSCMD ’$RESTART SPRINT=*DUMMY* ’

 The above three examples call MTSCMD to reassign the
 logical I/O unit SPRINT to *DUMMY*. The first assembly
 example uses the CALL macro and the second uses the MTSCMD
 macro.

 358 MTSCMD

 MTS 3: System Subroutine Descriptions

 April 1981

 NOTE ____

 Subroutine Description

 Purpose: To "remember" the values of the logical pointers for a
 sequential file. This information is used by the POINT
 subroutine to change the values of the logical pointers.

 Location: Resident System

 Alt. Entry: NOTE#

 Calling Sequences:

 Assembly: CALL NOTE,(unit,info)

 FORTRAN: CALL NOTE(unit,info,&rc4,&rc8,&rc12,&rc16,&rc20,
 &rc24,&rc28)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as returned
 by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 info is the location of a region of four fullwords ____
 into which the NOTE subroutine will return the
 values of the Read, Write, and Last Pointers, as
 well as the the last line number respectively
 for the sequential file pointed to by unit. ____
 rc4,...,rc24 are the statement labels to transfer to ____________
 if a nonzero return code is encountered.

 Return Codes:

 0 Successful return.
 4 Illegal FDUB-pointer specified.
 8 Illegal parameter specified.
 12 Read or write access not allowed.
 16 Locking the file for reading will result in a
 deadlock.
 20 Hardware error or software inconsistency
 encountered.
 24 Automatic wait for shared file was interrupted.

 Notes: The Read and Write Pointers have values which
 point to the next line to be read or written. ____

 NOTE 359

 MTS 3: System Subroutine Descriptions

 April 1981

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from NOTE with a return code of 24.

 Description: See Appendix B of the section "Files and Devices" in MTS
 Volume 1, The Michigan Terminal System, for details _______________________________
 concerning using sequential files with the NOTE and POINT
 subroutines.

 Examples: Assembly: CALL NOTE,(UNIT,INFO)
 .
 .
 UNIT DC F’6’
 INFO DS 4F

 FORTRAN: INTEGER*4 UNIT,INFO(4)
 DATA UNIT/6/
 ...
 CALL NOTE(UNIT,INFO)

 The above examples will call NOTE for the sequential file
 attached to logical I/O unit 6.

 360 NOTE

 MTS 3: System Subroutine Descriptions

 April 1981

 NPAR ____

 Subroutine Description

 Purpose: To count the number of parameters passed to a subroutine.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: i = NPAR(n)

 Parameters:

 n is the number of subroutine or function calls to _
 be counted. That is, a value of 1 will return
 the number of parameters passed to the sub-
 routine in which NPAR is called. A value of 2
 would return the number of parameters passed to
 the subroutine that called the subroutine that
 called NPAR. For most uses, n will be 1. An _
 error message is generated if n exceeds the _
 nesting level of the subroutine calling NPAR.

 Multiple return statement numbers are not coun-
 ted as parameters by NPAR.

 i is number of parameters passed. _

 Notes: Standard OS Type-I(S) calling conventions must be
 used in all subroutine calls. See the section
 "Calling Conventions" in this volume.

 If the subroutine calling NPAR has more parameters
 in its parameter list than are provided by its
 caller, then the excess parameters must be en-
 closed in slashes. Otherwise, a program interrupt
 may occur during the entry prolog code to the
 subroutine.

 Example: FORTRAN: CALL SUBR(X)
 STOP
 END

 SUBROUTINE SUBR(/X/,/Y/,/Z/)
 I = NPAR(1)
 IF (I .GE. 4) GO TO 10
 IF (I .EQ. 3) GO TO 300
 IF (I .EQ. 2) GO TO 200
 IF (I .EQ. 1) GO TO 100

 NPAR 361

 MTS 3: System Subroutine Descriptions

 April 1981

 10 WRITE(6,11)
 11 FORMAT(’ERROR’)
 ...
 100 ...
 200 ...
 300 ...
 ...
 RETURN
 END

 In the above example, NPAR counts the number of parameters
 passed to SUBR and sets up a branch accordingly. In this
 case, one parameter was passed.

 362 NPAR

 MTS 3: System Subroutine Descriptions

 April 1981

 OSGRDT ______

 Subroutine Description

 Purpose: To convert the OS date (YYddd) to the corresponding
 Gregorian date (MM/DD/YY).

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL OSGRDT,(osdat,grgdat)

 FORTRAN: CALL OSGRDT(osdat,grgdat,&rc4)

 REAL*8 OSGRDT
 date=OSGRDT(osdat,grgdat)

 PL/I(F): CALL PLCALL(OSGRDT,f2,osdat,grgdat);

 DCL PLCALLD RETURNS(FLOAT(16));
 date=PLCALLD(OSGRDT,f2,osdat,grgdat);

 Parameters:

 osdat is the 8-byte (REAL*8 or CHARACTER(8)) OS _____
 date in the character form "xxxYYddd", where
 "x" is any character.
 grgdat is 8 bytes (REAL*8 or CHARACTER(8)) into ______
 which the Gregorian date in the character
 form "MM/DD/YY" is placed on return.
 f2 is a fullword (FIXED BINARY(31)) containing __
 the integer 2.
 rc4 is a statement label to transfer to if a ___
 return code of 4 occurs.

 Values Returned:

 FR0 contains the Gregorian date in the character form
 "MM/DD/YY". This is assigned to date for FORTRAN and ____
 PL/I programs using the function-call format.

 Return Codes:

 0 Successful return.
 4 At least one digit position in the date does not
 contain a digit. Upon return, FR0 and grgdat ______
 contain blanks.

 OSGRDT 363

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The range of years is assumed to include 1900. The result
 for dates prior to 00060 is undefined.

 Examples: Assembly: CALL OSGRDT,(OSDAT,GRDAT)
 .
 .
 OSDAT DC C’ 71120’
 GRDAT DS CL8

 CALL OSGRDT,(OSDAT,DUMMY)
 STD 0,GRDAT
 .
 .
 OSDAT DC C’ 71120’
 DUMMY DS CL8
 GRDAT DS 0D,CL8

 The above examples call OSGRDT to convert the OS date
 71120 into the corresponding Gregorian date April 30,
 1971.

 FORTRAN: REAL*8 OSDAT,GRDAT
 CALL OSGRDT(OSDAT,GRDAT,&400)

 REAL*8 GRDAT,OSGRDT,OSDAT,DUMMY
 GRDAT=OSGRDT(OSDAT,DUMMY)

 The above examples call OSGRDT to convert the OS date in
 the variable OSDAT into the corresponding Gregorian date.

 PL/I(F): CALL PLCALL(OSGRDT,F2,’ 71120’,GRDAT);
 IF PL1RC¬=0 THEN GO TO ERROR;
 DECLARE OSGRDT ENTRY,
 F2 FIXED BINARY(31) INITIAL(2),
 GRDAT CHARACTER(8);
 PL1RC RETURNS (FIXED BINARY(31));

 UNSPEC(GRDAT)=UNSPEC(PLCALLD(OSGRDT,F2,OSDAT,
 DUMMY));
 IF PL1RC¬=0 THEN GO TO ERROR;
 DECLARE GRDAT CHARACTER(8),
 PLCALLD RETURNS(FLOAT(16)),
 OSGRDT ENTRY,
 F2 FIXED BINARY(31) INITIAL(2),
 OSDAT CHARACTER(8) INITIAL(’ 71120’),
 DUMMY CHARACTER(8);
 PL1RC RETURNS (FIXED BINARY(31));

 The above examples call OSGRDT to convert the OS date
 71120 into the corresponding Gregorian date April 30,
 1971.

 364 OSGRDT

 MTS 3: System Subroutine Descriptions

 April 1981

 PAR ___

 Subroutine Description

 Purpose: To give a program access to the system parameter string
 given on the $RUN command.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL PAR,(reg,len,max)

 FORTRAN: CALL PAR(reg,len,max,&rc4,&rc8)

 Parameters:

 reg is the location of a region into which the ___
 parameter string text will be placed. For
 FORTRAN programs, this should be declared as
 a LOGICAL*1 array.
 len is the location of a fullword integer ___
 (INTEGER*4) which will be set to the actual
 number of characters placed in the region.
 max is the location of a fullword integer ___
 (INTEGER*4) giving the maximum number of
 characters to be placed in the region. The
 PAR string may be from 0 to 255 characters in
 length.
 rc4,rc8 (optional) are statement labels to transfer _______
 to if a nonzero return code occurs.

 Return Codes:

 0 Successful return. Parameter string passed back.
 4 No PAR string was given on $RUN command or the PAR
 string is currently of zero length. reg and len ___ ___
 are left unchanged.
 8 The actual length of the PAR string is greater
 than max. max characters are placed into reg and ___ ___ ___
 len is set equal to max. ___ ___

 Notes: This same information is also available from the PARSTR
 item of the GUINFO/CUINFO subroutine.

 The PAR string subroutine converts the parameter string to
 uppercase. The PARSTR subroutine should be used to return
 the parameter string if uppercase conversion is not
 desired.

 PAR 365

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL PAR,(PARREG,LPAR,MAX)
 C 15,=F’4’
 BL OK Successful return
 BE NULLPAR No PAR string
 BH LONGPAR Long PAR string
 .
 .
 PARREG DS CL100
 LPAR DS F
 MAX DC F’100’

 FORTRAN: LOGICAL*1 PARREG(100)
 CALL PAR(PARREG,LPAR,100,&10,&20)

 The above two examples retrieve the PAR string and place
 it into the array PARREG.

 366 PAR

 MTS 3: System Subroutine Descriptions

 April 1981

 PARSTR ______

 Subroutine Description

 Purpose: To give a program access to the system parameter string
 given in the PAR field of the $RUN command.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL PARSTR,(reg,len,max,sws),VL

 FORTRAN: CALL PARSTR(reg,len,max,sws,&rc4,&rc8,&rc12)

 Parameters:

 reg is the location of a region into which the ___
 parameter string text will be placed. For
 FORTRAN programs, this should be declared as
 a LOGICAL*1 array.
 len is the location of a fullword integer ___
 (INTEGER*4) which will be set to the actual
 number of characters placed in the region.
 max is the location of a fullword integer ___
 (INTEGER*4) giving the maximum number of
 characters to be placed in the region. The
 PAR string may be from 0 to 255 characters in
 length.
 sws - is the location of a fullword of switches: ___

 bit 31: 0 - convert string to uppercase.
 1 - do not convert string.
 bits 0-30: unused, must be zero.

 rc4,...,rc12 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Successful return. Parameter string passed back.
 4 No PAR string was given on $RUN command or the PAR
 string is currently of zero length. reg and len ___ ___
 are left unchanged.
 8 The actual length of the PAR string is greater
 than max. max characters are placed into reg and ___ ___ ___
 len is set equal to max. ___ ___
 12 Illegal parameter or VL not specified.

 PARSTR 366.1

 MTS 3: System Subroutine Descriptions

 April 1981

 Notes: This same information is also available from the PARSTRMC
 item of the GUINFO/CUINFO subroutine.

 This subroutine is similar to the PAR subroutine except
 that it provides the option of not converting the parame-
 ter string to uppercase.

 Examples: Assembly: CALL PARSTR,(PARREG,LPAR,MAX,SWS),VL
 C 15,=F’4’
 BL OK Successful return
 BE NULLPAR No PAR string
 BH LONGPAR Long PAR string
 .
 .
 PARREG DS CL100
 LPAR DS F
 MAX DC F’100’
 SWS DC F’1’ Specify mixed-case string

 FORTRAN: LOGICAL*1 PARREG(100)
 CALL PARSTR(PARREG,LPAR,100,1,&10,&20)

 The above two examples retrieve the PAR string and place
 it into the array PARREG.

 366.2 PARSTR

 MTS 3: System Subroutine Descriptions

 April 1981

 Pattern-Matching Routines _________________________

 Three system subroutines, PATBUILD, PATMATCH, and PATFREE, are
 available for implementing $FILESTATUS-like pattern-matching capabili-
 ties from user programs.

 PATBUILD will build a pattern from an input string. The input string
 may be of any length and may specify a file name or a generic string.
 For example:

 File names: "2CYB:data?", "?.doc", "2ABC:?"

 Generic strings: "Bill R?", "in the state of ?"

 PATMATCH will compare an input string against the pattern built by
 PATBUILD. The input string may be of any length.

 PATFREE will free the storage used to build the pattern.

 These subroutines must be used together. The form of a typical
 program may be as follows;

 PATBUILD(...) Build the pattern

 DO WHILE <condition> Loop
 READ (a string) Get a string
 PATMATCH(...) See if that string matches
 IF Return-code = 0 A match
 ...
 ELSE No match
 ...
 ENDIF
 ENDDO

 PATFREE(...) Done with the pattern

 A complete example is given at the end of this description.

 Pattern-Matching Routines 366.3

 MTS 3: System Subroutine Descriptions

 April 1981

 PATBUILD ________

 Subroutine Description

 Purpose: To scan a patterned input string (a string with zero or
 more wildcard characters) and construct a pattern that
 PATMATCH can use to match against other strings. The
 input string may be of any length and may specify a file
 name or a generic character string.

 Location: Resident System

 Alt. Entry: PATBLD

 Calling Sequences:

 Assembly: CALL PATBUILD,(patstring,strlen,work,switches,
 ccid,chars),VL

 FORTRAN: CALL PATBLD(patstring,strlen,work,switches,
 ccid,chars)

 Parameters:

 patstring is the location of an input string (that _________
 possibly contains wildcard characters).
 strlen is the location of the fullword length of ______
 patstring. If strlen is given as -1, the _________ ______
 length will be determined by this sub-
 routine. In determining the length, it is
 assumed that patstring is followed by a _________
 delimiter.
 work is the location of a fullword for use by ____
 PATBUILD. This area must be passed un-
 changed to the PATMATCH and PATFREE
 subroutines.
 switches (optional) is the location of a fullword ________
 that contains switches as follows:

 bit 31: 0 - patstring is a file name. _________
 1 - patstring is not a file name. _________
 bit 30: 0 - This bit must be zero.
 bit 29: 0 - Upper and lowercase for a
 string is not significant;
 i.e., match occurrences in both
 cases.
 1 - Use the string as it is given;
 case is significant.
 bits 0-28: These bits must be zero.

 366.4 Pattern-Matching Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 If this parameter is omitted, switches is ________
 assumed to be zero.
 ccid (optional) is the location of a 4-character ____
 field that will be set to the ccid of the
 file name given in patstring. If omitted _________
 or if bit 31 of switches is 1, no ccid is ________
 returned.
 chars (optional) is the location of a 2-character _____
 string that contains the wildcard character
 and the pattern delimiter character (in
 that order) to be used in building the
 pattern. If omitted, the default values
 ("?" and " ") are used.

 Return Codes:

 0 A pattern was built since a string with wildcard
 characters in it was given in patstring. _________
 4 patstring specified a file name pattern indicating _________
 that all file names in a particular catalog will
 match (e.g., "2CRN:?", "-?").
 8 patstring had no wildcard characters. _________
 20 Error return - a partially specified ccid (e.g.,
 "W1??") was encountered in patstring. _________
 24 Error return - patstring specified a file name _________
 which is too long. That is, a file name longer
 than the allowed maximum file name length would be
 required to match it.
 28 Error return - patstring was not specified cor- _________
 rectly or is missing.
 32 Error return - invalid parameter address or bad
 parameter value (strlen=0, illegal switches value, ______ ________
 VL-bit not set, etc.).

 Description: An input string will be built into a pattern. The string
 may contain wildcard characters (a character that will
 match arbitrary characters) and may be followed by a
 delimiter. The default wildcard character is a question
 mark ("?"). The default delimiter is a blank. The input
 string may specify a file name, in which case the
 delimiters are blank, comma, "(", "+", and "@" and may not
 be set to anything else.

 Pattern matching rules:

 (1) A single wildcard character will match zero or
 more arbitrary characters in a string. Thus,

 A?Q?B will match all strings that begin with
 "A", end with "B", and contain the letter
 "Q".

 Pattern-Matching Routines 366.5

 MTS 3: System Subroutine Descriptions

 April 1981

 (2) "n" consecutive wildcard characters will match
 "n-1" arbitrary characters in the string. Thus,

 ???.s matches all strings that are four charac-
 ters long and end with ".s". The string
 "ab.s" will match while the strings
 "abc.s", "a.s", and ".s" will not.

 (3) A wildcard character cannot be used in the signon
 ID portion of a shared file name.

 (4) When strlen is given as -1, patstring is scanned ______ _________
 up to the first delimiter in order to determine
 its length. When a specific length is given in
 strlen, any delimiter character encountered is ______
 ignored. For example, to build the pattern for
 "?day is tomorrow" (assuming blank as delimiter),
 strlen must be 16. If strlen is given as -1, then ______ ______
 the pattern for "?day" only will be built since
 the first blank terminates the patterned string.

 PATBUILD constructs a pattern only if its return code is
 0, 4, or 8; otherwise a subsequent call to PATMATCH will
 generate a return code of 8 (no pattern to test). Note
 that when the return code from PATBUILD is 4 or 8, it may
 not be necessary to use PATMATCH since the pattern match
 in those cases is trivial; however, PATMATCH will work
 correctly if it is called.

 Notes:

 (1) When the chars parameter is included, both charac- _____ ____
 ters are assigned, and therefore both must be ____
 given. For example, if a user desires a delimiter
 character of "%", the character string should be
 "?%"; that is, the default wildcard character "?"
 must be included as the first element of the chars _____
 character string.
 (2) When an optional parameter is desired, any option-
 al parameters listed before the desired one must
 also be included.
 (3) The "case bit" (bit 29) of switches is ignored ________
 when file names are being matched. Upper and
 lowercase is not considered significant for file
 names.
 (4) The VL-bit is required on the parameter list.

 366.6 Pattern-Matching Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 PATMATCH ________

 Subroutine Description

 Purpose: To compare an input string against a pattern constructed
 earlier by PATBUILD. The input string may be of any
 length.

 Location: Resident System

 Alt. Entry: PATMCH

 Calling Sequences:

 Assembly: CALL PATMATCH,(compstr,strlen,work),VL

 FORTRAN: CALL PATMCH(comstr,strlen,work)

 Parameters:

 compstr is the location of an input string to _______
 compare against the pattern.
 strlen is the location of the fullword length of ______
 compstr. If strlen is given as -1, the _______ ______
 length of compstr will be determined by _______
 scanning for the first delimiter. In that
 case, it is assumed that compstr is fol- _______
 lowed by a delimiter.
 work is the location of the fullword pattern ____
 work area. This must be the value returned ____
 by PATBUILD.

 Return Codes:

 0 The string matched the pattern.
 4 The string did not match the pattern.
 8 Error return - there was no previous pattern to
 match; no match was made.
 12 Error return - bad parameter; either a bad address
 was given, compstr was empty, or VL-bit was not _______
 set.

 Description: PATMATCH is used (in conjunction with PATBUILD and PAT-
 FREE) to determine if its input string fits a pattern
 built previously by PATBUILD. PATMATCH’s behavior depends
 on the return code from PATBUILD as follows:

 RC was 0: compstr must fit the pattern built by _______
 PATBUILD. (Ccids must match exactly for
 file names.)

 Pattern-Matching Routines 366.7

 MTS 3: System Subroutine Descriptions

 April 1981

 RC was 4: Ccid fields must match exactly; the file
 name is ignored.
 RC was 8: compstr must match PATBUILD’s patstring _______ _________
 character for character. The ccids must
 match as well if file names are being
 matched.
 RC was 20, 24, 28, 32: Error return - no pattern to
 match against.

 Notes:

 (1) See PATBUILD description for rules on pattern
 matching.
 (2) compstr is assumed to be either a file name or a _______
 generic string depending on whether the pattern
 built by PATBUILD was for a file name or a generic
 string.
 (3) The VL-bit is required on the parameter list.

 366.8 Pattern-Matching Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 PATFREE _______

 Subroutine Description

 Purpose: To free the storage used for building a pattern (see
 PATBUILD and PATMATCH descriptions).

 Location: Resident System

 Alt. Entry: PATFRE

 Calling Sequences:

 Assembly: CALL PATFREE,(work),VL

 FORTRAN: CALL PATFRE(work)

 Parameters:

 work is the location of the fullword pattern ____
 work area. This must be the value returned ____
 from PATBUILD.

 Return Codes:

 0 Successful return.
 4 Illegal value in work parameter or VL-bit not set. ____
 Storage was not released.

 Note:

 (1) The VL-bit is required on the parameter list.

 Pattern-Matching Routines 366.9

 MTS 3: System Subroutine Descriptions

 April 1981

 The following example programs read input and decide if the input
 matches the pattern "?day". Note that in setting up the pattern, the
 blank after "?day" is necessary since we are calling PATBUILD with
 strlen as a -1. strlen could also be given the value 4 here. switches ______ ______ ________
 is set to 1 indicating that the pattern is not a file name and that
 upper/lower case is not significant for the purpose of pattern matching.

 Assembly:

 MATCHIT CSECT
 REQU TYPE=DEC
 ENTER R10,SA=SAVE

 MVC PATTERN(5),=CL5’?day ’ Set up the pattern
 MVC STRLEN(4),=F’-1’ Let length be determined
 MVC SWITCHES(4),=F’1’ Set switches

 Build the pattern

 CALL PATBUILD,(PATTERN,STRLEN,WORK,SWITCHES),VL

 Read in strings for comparison and see if they match

 DO
 SCARDS COMPSTR,(R3) Read in comparison string
 ST R3,STRLEN Store returned length
 IF COMPSTR(4),EQ,’stop’
 EXITDO , Quit when user types "stop"
 ENDIF
 CALL PATMATCH,(COMPSTR,STRLEN,WORK),VL A match?
 IF R15,NZ If no match
 SPRINT ’No, it does not match.’
 ELSE , If a match
 SPRINT ’Yes, it matches.’
 ENDIF
 ENDDO

 Free up the pattern work area

 CALL PATFREE,(WORK),VL Return work area

 EXIT (15) Done.

 SAVE DS 18F Register save area
 PATTERN DS CL5 Pattern string
 WORK DS A Work space
 COMPSTR DS CL100 Comparison string
 STRLEN DS F Length of comparison string
 SWITCHES DS F Type of pattern switch
 END

 366.10 Pattern-Matching Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN:

 INTEGER*4 COMLEN, WORK
 INTEGER*2 LEN
 CHARACTER*100 COMSTR
 CHARACTER*4 COMBEG
 CHARACTER*5 PATTRN
 EQUIVALENCE (COMSTR,COMBEG)
 DATA PATTRN/’?day ’/
 CALL PATBLD(PATTRN,-1,WORK,1)
 1 CALL SCARDS(COMSTR,LEN,0,LNUM,*200)
 IF (COMBEG.EQ.’stop’) GOTO 200
 COMLEN = LEN
 CALL PATMCH(COMSTR,COMLEN,WORK,*100,*100,*100)
 WRITE (6,10)
 10 FORMAT(’Yes, it matches’)
 GOTO 1
 100 WRITE (6,101)
 101 FORMAT(’No, it does not match’)
 GOTO 1
 200 CALL PATFRE(WORK)
 STOP
 END

 Pascal/JB:

 Program MATCHIT(Input,Output);

 Type
 PATTERN_TYPE = Packed Array[1..10] of Char;
 COMPSTR_TYPE = Packed Array[1..200] of Char;

 Var
 PATTERN : PATTERN_TYPE; { Pattern }
 COMPSTR : COMPSTR_TYPE; { Comparison string }
 INPUT_TEXT : String(200); { User input }
 STRLEN, WORK, SWITCHES : Integer; { Parameters }

 { Pascal definitions for PATBUILD, PATMATCH, PATFREE.
 All parameters must be of type VAR for a FORTRAN type routine }

 Procedure PATBUILD(VAR PATTERN:PATTERN_TYPE;
 VAR STRLEN, WORK, SWITCHES :Integer); Fortran;
 Procedure PATMATCH(VAR COMPSTR:COMPSTR_TYPE;
 VAR STRLEN,WORK:Integer); Fortran;
 Procedure PATFREE (VAR WORK:Integer); Fortran;

 Begin { Main program }

 PATTERN := ’?day ’; { Set up the pattern }
 STRLEN := -1; { Length to be figured out }

 Pattern-Matching Routines 366.11

 MTS 3: System Subroutine Descriptions

 April 1981

 SWITCHES := 1; { Not a filename; anycase }

 PATBUILD (PATTERN,STRLEN,WORK,SWITCHES); { Build pattern }

 Reset(Input,’File=*source*,interactive’); { Read terminal }
 Readln (INPUT_TEXT); { Read 1st comparison string }

 While INPUT_TEXT <> ’stop’ Do { Continue until "stop" }
 Begin
 STRLEN := Length(INPUT_TEXT); { Get length of input }
 COMPSTR := INPUT_TEXT; { Move text to array }

 PATMATCH (COMPSTR,STRLEN,WORK); { See if a match }
 If FortranRC = 0 Then { 0 => a match }
 Writeln (’Yes, it matches.’)
 Else { >0 => no match }
 Writeln (’No, it does not match.’);

 Readln (INPUT_TEXT) { Next comparison string }
 End;

 PATFREE (WORK) { Free up the pattern }

 End.

 The following is an example run of the above programs. Program output
 is underlined.

 $RUN program
 Doris Day
 Yes, it matches. ________________
 Tuesday
 Yes, it matches. ________________
 This is a nice day
 Yes, it matches. ________________
 DAY
 Yes, it matches. ________________
 Dayton
 No, it does not match. ______________________
 stop

 366.12 Pattern-Matching Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 PERMIT ______

 Subroutine Description

 Purpose: To permit a file so that it can be shared by other users.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL PERMIT,(what,how,whotyp,wholen,who,info,
 wholen2,who2,ercode,errmsg),VL

 FORTRAN: CALL PERMIT(what,how,whotyp,wholen,who,info,
 wholen2,who2,ercode,errmsg,&rc4,&rc8)

 Parameters:

 what is the location of either ____
 (a) a file name with trailing blank (if
 info=0), ____
 (b) a fullword-integer FDUB-pointer (such as
 returned by GETFD) (if info=1), ____
 (c) a fullword-integer logical I/O unit num-
 ber (0 through 99) (if info=1), or ____
 (d) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS) (if info=1). ____
 how is the location of a fullword integer speci- ___
 fying the access. There are six independent
 accesses; add the values below for the combi-
 nations wanted.

 Access Value ______ _____

 Read 1
 Write-expand 2
 Write-change,empty 4
 Truncate, renumber 8
 Destroy, rename 16
 Permit 32

 Default 128

 Some popular combinations are:

 None 0
 Write 6
 Read-write 7
 Unlimited 63

 PERMIT 367

 MTS 3: System Subroutine Descriptions

 April 1981

 This parameter is ignored for whotype=9. _______

 whotyp is the location of a fullword integer whose ______
 value indicates what sort of who is being ___
 specified, as follows:

 Value _____

 who is a signon ID 0 ___
 who is a project number 1 ___
 who is OTHERS 2 ___
 who is ALL 3 ___
 who is ME 4 ___
 who is OWNER 5 ___
 who is a program key 6 ___
 who is a signon ID and ___
 program key 7
 who is a project number ___
 and program key 8
 who is a how/who string 9 ___

 wholen is the location of a fullword integer which ______
 specifies the number of characters in the
 signon ID or project number (1 to 4) speci-
 fied by who (for whotype=0,1,7, or 8), the ___ _______
 number of characters in the program key (1 to
 13) specified by who (for whotype=6), or the ___ _______
 number of characters in the how/who string
 (for whotype=9). _______
 who is the location of the 1- to 4-character ___
 signon ID or project number (for whotype=0,1, _______
 7, or 8), the 1- to 13-character program key
 (for whotype=6), or the how/who string (for _______
 whotype=9). Short signon IDs, project num- _______
 bers, program keys, and how/who strings may
 end with a trailing question mark.
 info is the location of a fullword integer that ____
 specifies the kind of what parameter ____
 supplied.
 wholen2 is the location of a fullword integer which _______
 specifies the number of characters in the
 program key (1 to 13) specified by who2. ____
 This parameter is present only when whotype=7 _______
 or 8.
 who2 is the location of the 1- to 13-character ____
 program key. This parameter is present only
 when whotype=7 or 8. Short program keys may _______
 end with a trailing question mark.
 ercode (optional) is the location of a fullword in ______
 which the PERMIT subroutine will place an
 error number if an error return (return code
 4) is made. If this parameter is omitted,
 then the errmsq parameter must also be omit- ______

 368 PERMIT

 MTS 3: System Subroutine Descriptions

 April 1981

 ted. Assembly code users who wish to omit
 these parameters should either follow the
 variable parameter list convention (high-
 order bit of the previous parameter’s adcon
 in the parameter list should be 1) or else
 supply an adcon which is zero (rather than
 pointing to a zero).

 Error numbers less than 100 indicate some-
 thing was wrong with either the mechanics of
 the subroutine call or the values of the
 parameters:

 Number Message ______ _______

 1 Illegal parameter list pointer
 2 Illegal "what" parameter address
 3 Illegal "how" parameter address
 Illegal "onoff" address
 Illegal "pkey" address
 4 "How" parameter value not 0 to 63 or 128
 "onoff" parameter value not 0 or 1
 Illegal program key "xxxx"
 5 Illegal "whotype" parameter address
 6 "Whotype" parameter value not 0 to 9
 7 Illegal "wholen" parameter address
 8 Bad "wholen" parameter value
 9 Illegal "who" parameter address
 10 Illegal "info" parameter address
 11 "Info" parameter value not 0 to 1
 12 Illegal "wholen2" parameter address
 13 Bad "wholen2" parameter value
 14 Illegal "who2" parameter address
 15 Illegal program key

 Error numbers between 100 AND 200 describe
 errors common to the $PERMIT command:

 101 Illegal file name "xxxx" or "what"
 parameter
 102 File not found - file "xxxx"
 103 Access not allowed to file "xxxx"
 (Permit access required to permit a
 file.)
 104 Deadlock situation, try later - file
 "xxxx"
 105 Interrupted out of wait for locked file
 "xxxx"
 106 "Default Others" does not do anything
 107 Illegal character in CCID or Project -
 "xxxx"
 108 Invalid combination of NONE with other
 access

 PERMIT 369

 MTS 3: System Subroutine Descriptions

 April 1981

 109 Invalid combination of DEFAULT with
 other access
 110 Invalid combination of ALL with other
 accessors
 111 Invalid CCID "xxxx"
 112 Invalid project "xxxx"
 113 Pkey cannot be used in combination with
 RUN or EDIT access
 114 Invalid access/accessor specification
 115 Invalid operand "xxxx"
 116 Expected access specification missing
 Invalid use of PKEY with ALL or OTHERS
 117 Missing file name
 118 Missing closing parenthesis

 Error numbers 201 and above indicate a file
 system error of some sort.

 If a wait to lock is interrupted by an
 attention interrupt, control passes to MTS
 unless the user program has established an
 attention interrupt exit (by calling the
 ATTNTRP subroutine). Following a $RESTART
 command or a return to the point of interrup-
 tion from the attention exit, a return is
 made from PERMIT with an error code of 105.

 errmsq (optional) is the location of a 20-fullword ______
 (80-character) region in which the PERMIT
 subroutine will place the corresponding error
 message if an error return (return code 4) is
 made. Assembly language users should see the
 previous instructions on omitting optional
 parameters for the ercode parameter. ______
 rc4,rc8 (optional) is the statement label to transfer _______
 to if a nonzero return code occurs.

 Return Codes:

 0 The file has been permitted in the requested
 manner.
 4 Error. The file has not been permitted. See the
 ercode and errmsq values returned for the specific ______ ______
 error.
 8 Illegal errmsg or ercode parameter. ______ ______

 Examples: Assembly: CALL PERMIT,(WHAT,HOW,WHOTYP,WHOLEN,WHO,
 INFO,ERCODE,ERRMSG),VL
 .
 .
 .
 WHAT DC C’PROB1DATA ’
 HOW DC F’1’

 370 PERMIT

 MTS 3: System Subroutine Descriptions

 April 1981

 WHOTYPE DC F’1’
 WHOLEN DC F’3’
 WHO DC C’2AA’
 INFO DC F’0’
 ERCODE DS F
 ERRMSG DS CL80

 FORTRAN: CALL PERMIT(’PROB1DATA ’,1,1,3,’2AA’,0)

 The above examples permit the file PROB1DATA for read
 access by all users whose project number begins with the
 three characters 2AA.

 Assembly: CALL PERMIT,(WHAT,HOW,WHOTYP,WHOLEN,WHO,
 INFO,ERCODE,ERRMSG),VL
 .
 .
 .
 WHAT DC C’PROB1DATA ’
 HOW DS F
 WHOTYPE DC F’9’
 WHOLEN DC F’11’
 WHO DC C’READ P=2AA?’
 INFO DC F’0’
 ERCODE DS F
 ERRMSG DS CL80

 FORTRAN: CALL PERMIT(’PROB1DATA ’,0,9,11,
 ’READ P=2AA?’,0)

 The above examples are similar to the first set except
 that the how/who access is specified by a character string
 (whotype=9). _______

 PERMIT 370.1

 MTS 3: System Subroutine Descriptions

 April 1981

 370.2 PERMIT

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 PGNTTRP _______

 Subroutine Description

 Purpose: To allow control to be returned to the user on a program
 interrupt.

 Location: Resident System

| Alt. Entries: PGNTT, PGNTTRPS, PGNTPS

 Calling Sequences:

 Assembly: LM 0,1,=A(exit,region)
 CALL PGNTTRP

| CALL PGNTTRPS,(exit,region),VL
|
| FORTRAN: CALL PGNTPS(exit,region,&rc4)

 Parameters:

| exit (GR0) should be zero or the location to ____
| transfer to if a program interrupt occurs.
| region (GR1) should should contain the location of a ______
| 72-byte save region for storing pertinent
| information.
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
| 4 Illegal parameter or no VL bit specified.

 Description: A call on the subroutine PGNTTRP sets up a program
 interrupt intercept for one interrupt only. The calling
 sequence specifies the save region for storing information
 and a location to transfer to upon the next occurrence of
 a program interrupt. When an interrupt occurs and the
 exit is taken, the intercept is cleared so that another
 call to PGNTTRP is necessary to intercept the next program
 interrupt. When a program interrupt occurs, the exit is
 taken in the form of a subroutine call (BALR 14,15 with a
 GR13 save region provided) to the location previously
 specified. If the exit subroutine returns to MTS (BR 14),
 MTS will handle the interrupt as if PGNTTRP had not been
 called originally. This feature allows the user to take
 brief control of the interrupt before MTS takes complete
 control of the interrupt. When MTS takes control of the

 PGNTTRP 371

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 interrupt, execution of the program will be terminated and
 a message will be printed providing the location of the
 interrupt.

 If GR0 is zero on a call to PGNTTRP, the program interrupt
 intercept is disabled. GR1 should be zero or point to a
 valid save region.

 When the program interrupt exit is taken, the first eight
 bytes of the save region contain the program interrupt
 PSW, and the remainder contains the contents of general
 registers 0 through 15 (in that order) at the time of the
 interrupt. The PSW stored in the savearea is always in BC
 mode (bit 12 is zero). The floating-point registers
 remain as they were at the time of the interrupt. GR1
 will contain the location of the save region. The
 contents of GR0 and GR2 to GR12 are unpredictable.

 If, on a call to PGNTTRP, the first byte of the save
 region is X’FF’, PGNTTRP does not return to the calling
 program; rather the right-hand half of the PSW and the
 general registers are immediately restored from the save
 region and a branch is made to the location specified in
 the second word of the region. This type of call on
 PGNTTRP, after the first program interrupt exit is taken,
 allows the user to set a switch (for example) and to
 return to the point at which he was interrupted with the
 program interrupt intercept again enabled.

 The PGNTTRP item of the GUINFO/CUINFO subroutine may be
 used to save a previous exit address and associated region
 so that it may be later restored.

| A call on the PGNTTRPS or PGNTPS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the PGNTTRP subroutine.

 Example: In this example, the program interrupt intercept is
 enabled for a specified portion of the program. When the
 interrupt occurs, a branch will be made to the label EXIT
 where a switch will be set marking the interrupt occur-
 rence. The intercept will be reenabled by a second call
 to PGNTTRP with the FF flag set, and a branch will be made
 back to the point where the interrupt occurred.

 372 PGNTTRP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 LM 0,1,=A(EXIT,REGION)
 CALL PGNTTRP The intercept is enabled.
 ...
 SR 0,0
 SR 1,1
 CALL PGNTTRP The intercept is disabled.
 ...
 USING EXIT,15
 EXIT OI SW,X’01’
 MVI 0(1),X’FF’
 LA 0,EXIT
 CALL PGNTTRP The intercept is reenabled.
 REGION DS 18F
 SW DC X’00’

 PGNTTRP 372.1

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 372.2 PGNTTRP

 MTS 3: System Subroutine Descriptions

 April 1981

 PKEY ____

 Subroutine Description

 Purpose: To push and pop program keys.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL PKEY,(string,pkey),VL

 FORTRAN: CALL PKEY(string,pkey,&rc4,&rc8,&rc12,&rc16)

 Parameters:

 string is the location of a command (see below) ______
 terminated with a trailing blank.
 pkey (optional) is the location of a new program ____
 key terminated with a trailing blank.
 rc4,...,rc16 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 VL must be specified even if both parameters are
 given in order to facilitate the addition of new
 parameters.

 Return Codes:

 0 Successful return.
 4 Invalid command string.
 8 Invalid program key.
 12 Attempt to push or pop too many times.
 16 Invalid parameters.

 Description: The legal command strings are:

 PUSH The current program key is pushed onto the stack
 of program keys and the new program key is made
 the current key. If no new program key is
 specified, the current program key is pushed
 onto the stack, but remains the current key.

 POP The program key on the top of the stack is made
 the current program key and is removed from the
 stack. The pkey parameter is not required. ____

 SET The new program key is made the current program
 key. The old program key is not pushed onto the
 stack of program keys.

 PKEY 373

 MTS 3: System Subroutine Descriptions

 April 1981

 RESET The stack of program keys is cleared, and the
 current program key is reset to its original
 value.

 Currently, user programs may only specify the program key
 *EXEC in addition to the program key assigned to the file
 being executed. This will be expanded to include other
 program keys in the future.

 Example: FORTRAN: CALL FTNCMD(’ASSIGN 99=WXYZ:LOGFILE; ’)
 CALL PKEY(’PUSH ’,’*EXEC ’)
 ...
 CALL PKEY(’POP ’)
 WRITE(99,100) A,B,C
 100 FORMAT(3F10.2)
 CALL PKEY(’PUSH ’,’*EXEC ’)
 ...

 The above example assigns FORTRAN I/O unit 99 to the file
 WXYZ:LOGFILE, which is permitted to a program key. When
 the program writes into this file, the PKEY subroutine is
 called to switch the program key from *EXEC to the program
 key of the file, and subsequently is called to restore the
 program key back to *EXEC.

 374 PKEY

 MTS 3: System Subroutine Descriptions

 April 1981

 POINT _____

 Subroutine Description

 Purpose: To alter the values of any or all of the logical pointers
 for a sequential file.

 Location: Resident System

 Alt. Entry: POINT#

 Calling Sequences:

 Assembly: CALL POINT,(unit,info,code)

 FORTRAN: CALL POINT(unit,info,code,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as returned
 by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 info is the location of a region of four fullwords ____
 from which the POINT subroutine will set any or
 all of the logical pointers according to the
 value of code. The region contains the pointers ____
 in the same order as returned by the NOTE
 subroutine, that is, the Read, Write, and Last
 Pointers as well as the last line number,
 respectively.
 code is the location of a fullword containing a value ____
 from 1 to 15 indicating which of the 4 logical
 pointers should be set. The conventions are as
 follows:

 1 Set Read Pointer
 2 Set Write Pointer
 4 Set Last Pointer
 8 Set last line number

 These values should be added for multiple
 action, i.e., 7 means to set the Read, Write and
 Last Pointers only.
 rc4,...,rc24 are the statement labels to transfer to ____________
 if a nonzero return code is encountered.

 POINT 375

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 Successful return.
 4 Illegal FDUB-pointer specified.
 8 Illegal parameter specified.
 12 Read or write access not allowed.
 16 Locking the file appropriately will result in a
 deadlock.
 20 Hardware error or software inconsistency
 encountered.
 24 Automatic wait for shared file was interrupted.

 Notes: If any of the first three values of the region
 info are set to zero and the POINT subroutine is ____
 called, the effect will be to reset the indicated
 pointers (Read, Write and/or Last depending on the
 value of code) to the beginning of the file. ____

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from POINT with a return code of 24.

 Description: See Appendix B of the section "Files and Devices" in MTS
 Volume 1, The Michigan Terminal System, for details _______________________________
 concerning using sequential files with the NOTE and POINT
 subroutines.

 Examples: Assembly: CALL POINT,(UNIT,INFO,CODE)
 .
 .
 UNIT DC F’6’
 INFO DS 4F
 CODE DC F’7’

 FORTRAN: INTEGER*4 UNIT,INFO(4)
 DATA UNIT/6/
 ...
 CALL POINT(UNIT,INFO,7)

 These examples call POINT (assuming that the NOTE sub-
 routine was called previously) for the sequential file
 attached to logical I/O unit 6. The CODE parameter (7)
 specifies that the pointers are to be set for Read, Write,
 and Last.

 376 POINT

 MTS 3: System Subroutine Descriptions

 April 1981

 Printer Plot Routines _____________________

 Subroutine Description

 Purpose: To produce plots in the normal output stream.

 Location: *LIBRARY

 Entry Points: The printer plot routines have the following entry points:
 PLOT1, PLOT2, PLOT3, PLOT4, PLOT14, PRCHAR, PREND, PRPLOT,
 STPLT1, STPLT2, OMIT, and SETLOG. The standard approach
 to produce a plot is to call PLOT1, PLOT2, PLOT3, and
 PLOT4 in that order. PLOT2 must be called for each plot
 to be produced.

 Logical I/O Units Referenced:
 SPRINT - Output from the printer plot routines (the plot).
 Note: When the printer is used as the SPRINT
 device, a page skip is normally issued by the __ ___
 user before calling PLOT4 in order to force a ____
 skip to the top of the next page before starting
 the plot.
 SERCOM - Error messages.

 Example: FORTRAN: DIMENSION IMAGE(1500)
 INTEGER NSC(5)/1,0,3,0,2/
 DATA BCD/’* ’/
 CALL PLOT1(NSC,11,3,11,5)
 CALL PLOT2(IMAGE,1.0,-1.0,1.0,-1.0)
 DO 20 I=1,60
 DO 20 J=1,40
 X = (I-30.)/30.
 Y = (J-20.)/20.
 IF (X**2+Y**2.GT.0.75**2) GO TO 20
 CALL PLOT3(BCD,X,Y,1,4)
 20 CONTINUE
 CALL PLOT4(14,’VERTICAL LABEL’)
 STOP
 END

 The above FORTRAN program will produce the plot given on
 the following page.

 Printer Plot Routines 377

 MTS 3: System Subroutine Descriptions

 April 1981

 1.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 I I I I I I I I I I I
 I I I I I I I I I I I
 I I I I I I I I I I I
 0.800 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 I I I I I * I I I I I
 I I I I ***************** I I I I
 I I I I***********************I I I I
 0.600 +-----+-----+----***************************----+-----+-----+
 I I I ******************************* I I I
 I I I ********************************* I I I
 I I ************************************* I I
 0.400 +-----+----***************************************----+-----+
 V I I *************************************** I I
 E I I *** I I
 R I I *** I I
 T 0.200 +-----+--***--+-----+
 I I I *** I I
 C I I *** I I
 A I I *** I I
 L 0.000 +-----+-***-+-----+
 I I *** I I
 L I I *** I I
 A I I *** I I
 B -0.200 +-----+--***--+-----+
 E I I *** I I
 L I I *** I I
 I I *************************************** I I
 -0.400 +-----+----***************************************----+-----+
 I I ************************************* I I
 I I I ********************************* I I I
 I I I ******************************* I I I
 -0.600 +-----+-----+----***************************----+-----+-----+
 I I I I***********************I I I I
 I I I I ***************** I I I I
 I I I I I * I I I I I
 -0.800 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 I I I I I I I I I I I
 I I I I I I I I I I I
 I I I I I I I I I I I
 -1.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.0

 378 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: REAL ARG/0./,X(61),YSIN(61),YCOS(61)
 REAL PI60/.0523599/
 INTEGER CSIN/’* ’/,CCOS/’% ’/
 INTEGER NSCALE(5)/1,0,3,0,0/
 CALL PLOT1(NSCALE(1),11,3,11,5)
 CALL PLOT2(0,180.,0,1.,-1.)
 X(1) = 0.
 YSIN(1) = 0.
 YCOS(1) = 1.
 DO 1 I = 2,61
 X(I) = X(I-1) + 3.
 ARG = ARG + PI60
 YSIN(I) = SIN(ARG)
 1 YCOS(I) = COS(ARG)
 CALL PLOT3(CSIN,X(1),YSIN(1),61,4)
 CALL PLOT3(CCOS,X(1),YCOS(1),61,4)
 CALL PLOT4(11,’SIN AND COS’)
 CALL SYSTEM
 END

 The above FORTRAN program will produce the plot given on
 the following page.

 Printer Plot Routines 379

 MTS 3: System Subroutine Descriptions

 April 1981

 1.000 %%%%%-+-----+-----+-----+-*********-+-----+-----+-----+-----+
 I %%% I I *** I *** I I I I
 I I %% I I ** I I I ** I I I I
 I I %%I I** I I I **I I I I
 0.800 +-----+-----%%---**-----+-----+-----+-----**----+-----+-----+
 I I I % * I I I I I * I I I
 I I I % I I I I I * I I I
 I I I** %%I I I I I **I I I
 0.600 +-----+-----*-----%-----+-----+-----+-----+-----*-----+-----+
 I I *I I% I I I I I* I I
 I I * I I % I I I I I * I I
 I I * I I % I I I I I * I I
 0.400 +-----+-*---+-----+---%-+-----+-----+-----+-----+---*-+-----+
 I I* I I %I I I I I *I I
 I * I I % I I I I * I
 S I *I I I I% I I I I I* I
 I 0.200 +---*-+-----+-----+-----+-%---+-----+-----+-----+-----+-*---+
 N I * I I I I % I I I I I * I
 I * I I I I % I I I I I * I
 A I* I I I I %I I I I I *I
 N 0.000 *-----+-----+-----+-----+-----%-----+-----+-----+-----+-----*
 D I I I I I I% I I I I I
 I I I I I I % I I I I I
 C I I I I I I % I I I I I
 O -0.200 +-----+-----+-----+-----+-----+---%-+-----+-----+-----+-----+
 S I I I I I I %I I I I I
 I I I I I I % I I I I
 I I I I I I I% I I I I
 -0.400 +-----+-----+-----+-----+-----+-----+-%---+-----+-----+-----+
 I I I I I I I % I I I I
 I I I I I I I % I I I I
 I I I I I I I %I I I I
 -0.600 +-----+-----+-----+-----+-----+-----+-----%-----+-----+-----+
 I I I I I I I I%% I I I
 I I I I I I I I % I I I
 I I I I I I I I % I I I
 -0.800 +-----+-----+-----+-----+-----+-----+-----+----%%-----+-----+
 I I I I I I I I I%% I I
 I I I I I I I I I %% I I
 I I I I I I I I I %%% I
 -1.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-%%%%%
 0. 18. 36. 54. 72. 90. 108. 126. 144. 162. 180.

 380 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 PLOT1 _____

 Purpose: PLOT1 sets up the information required to construct the
 plot.

 Calling Sequences:

 Assembly: CALL PLOT1,(nscale,nhl,nsbh,nvl,nsbv)

 FORTRAN: CALL PLOT1(nscale(1),nhl,nsbh,nvl,nsbv,&rc4)

 Parameters:

 nscale is the location of a region of five fullword ______
 integers supplying information about scaling
 and the number of places to be printed to the
 right of the decimal point. The field width
 for printing Y values is 8, and for X values
 is min(nsbv,8).
 nscale(1) If nscale(1)=0, the values 0,3,0,3 _________ _________
 are used for nscale(2) through _________
 nscale(5). _________
 nscale(2) If nscale(2)=Y, the numbers printed _________ _________
 along the Y-axis are 10**Y times
 their true value.
 nscale(3) The number of decimal places print- _________
 ed for Y values.
 nscale(4) If nscale(4)=X, the numbers printed _________ _________
 along the X-axis are 10**X times
 their true values.
 nscale(5) The number of decimal places print- _________
 ed for X values.
 nhl is the location of a fullword integer giving ___
 the number of horizontal lines in the plot.
 This number must be 2 or greater.
 nsbh is the location of a fullword integer giving ____
 the number of spaces between horizontal
 lines. This number must be 1 or greater.
 nvl is the location of a fullword integer giving ___
 the number of vertical lines in the plot.
 This number must be 2 or greater.
 nsbv is the location of a fullword integer giving ____
 the number of spaces between the vertical
 lines. This number must be 1 or greater.
 rc4 (optional) is the statement label to transfer ___
 to if a nonzero return code occurs.

 Return Codes:

 0 Normal return.
 4 Improper Argument. PLOT1 has not been entered.

 Printer Plot Routines 381

 MTS 3: System Subroutine Descriptions

 April 1981

 PLOT2 _____

 Purpose: PLOT2 prepares the grid and sets up the information
 required by PLOT3 to place a point correctly in the graph.

 Calling Sequences:

 Assembly: CALL PLOT2,(image,xmax,xmin,ymax,ymin)

 FORTRAN: CALL PLOT2(image,xmax,xmin,ymax,ymin,&rc4,&rc8)

 Parameters:

 image is either the location of a zero or the _____
 location of a region equal to or greater in
 length than

 (nsbh*nhl-nsbh+nhl)*(nsbv*nvl-nsbv+nvl+8)+8

 bytes. This region is used to form the image
 of the graph.
 xmax is the location of the largest X value of the ____
 points to be plotted.
 xmin is the location of the smallest X value of ____
 the points to be plotted.
 ymax is the location of the largest Y value of the ____
 points to be plotted.
 ymin is the location of the smallest Y value of ____
 the points to be plotted.
 Note: The preceding four arguments are eith-
 er short or long floating-point numbers.
 rc8 (optional) is the statement label to transfer ___
 to if a nonzero return code occurs.

 Return Codes:

 0 Normal return.
 8 xmax ≤ xmin or ymax ≤ ymin. PLOT2 has not been ____ ____ ____ ____
 entered.

 Description: If PLOT1 has not been entered by the time PLOT2 is called,
 defaults are assumed for nscale, nhl, nsbh, nvl, and nsbv. ______ ___ ____ ___ ____
 In particular, nscale=0, nhl=6, nsbh=9, and nsbv=9. The ______ ___ ____ ____
 value of nvl depends on the SPRINT device; for a printer, ___
 nvl=11, and for a Teletype, nvl=6. ___ ___

 If a zero is specified for image, then PLOT2 will _____
 automatically allocate sufficient space for the image
 region. On successive calls to PLOT2, space will released
 and reallocated as needed.

 382 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 PLOT3 _____

 Purpose: PLOT3 places the plotting character in the graph for each
 point (X,Y).

 Calling Sequences:

 Assembly: CALL PLOT3,(bcd,x,y,ndata,int)

 FORTRAN: CALL PLOT3(bcd,x,y,ndata,int,&rc4,&rc8,&rc12,
 &rc16)

 Parameters:

 bcd is the location of the plotting character to ___
 be used.
 x is the location of a floating-point region of _
 X values.
 y is the location of a floating-point region of _
 Y values.
 ndata is the location of the fullword integer _____
 number of points to be plotted.
 int is the location of the fullword integer ___
 number of bytes between the addresses of
 successive numbers to be used as coordinates.
 For a short form vector, this is 4. int ___
 should be a multiple of 4.
 rc12,rc16 (optional) are the statement labels to _________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 Normal return.
 12 Using a log scale with a negative or zero xmin, ____
 xmax,ymin, ymin, or ymax value, or, int not a ____ ____ ____ ____ ___
 multiple of 4.
 16 PLOT2 has never been entered, or has not been
 entered since the last call to PLOT4.

 Printer Plot Routines 383

 MTS 3: System Subroutine Descriptions

 April 1981

 PLOT4 _____

 Purpose: PLOT4 prints the completed graph with values along the X-
 and Y-axes and a centered vertical label down the left
 side.

 Calling Sequences:

 Assembly: CALL PLOT4,(nchar,label)

 FORTRAN: CALL PLOT4(nchar,label,&rc4,&rc8,&rc12,&rc16,
 &rc20,&rc24,&rc28)

 Parameters:

 nchar is the location of the fullword integer _____
 number of characters in the vertical label.
 If this is zero, no label will be printed.
 label is the location of a region containing the _____
 label to be printed.
 rc20,rc24,rc28 (optional) are statement labels to ______________
 transfer to if a nonzero return code occurs.
 encountered.

 Return Codes:

 0 Normal return.
 20 PLOT2 has not been entered.
 24 Using a log scale with a negative or zero xmin, ____
 xmax,ymin, or ymax value (see SETLOG and PLOT2). ____ ____ ____
 28 Error in scaling; one or more values can not be
 printed in the form specified by nscale (see ______
 PLOT1).

 Description: See OMIT for the possibility of deleting grid values and
 the last line of the graph.

 If return code 28 is given, the plot will be printed with
 all grid values which can be printed.

 384 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 PLOT14 ______

 Purpose: PLOT14 allows the user to combine successive calls on
 PLOT1, PLOT2, PLOT3, and PLOT4 into one call on PLOT14.

 Calling Sequences:

 Assembly: CALL PLOT14,(nscale,nhl,nsbh,nvl,nsbv,image,
 xmax,xmin,ymax,ymin,bcd,x,y,ndata,
 int,nchar,label)

 FORTRAN: CALL PLOT14(nscale(1),nhl,nsbh,nvl,nsbv,image,
 xmax,xmin,ymax,ymin,bcd,x,y,ndata,
 int,nchar,label,&rc4,&rc8,&rc12,
 &rc16,&rc20,&rc24,&rc28)

 Parameters:

 See the descriptions of PLOT1, PLOT2, PLOT3, and
 PLOT4 for the parameters and return codes used.

 Description: This routine executes the appropriate calls on PLOT1,
 PLOT2, PLOT3, and PLOT4.

 Printer Plot Routines 385

 MTS 3: System Subroutine Descriptions

 April 1981

 PRCHAR ______

 Purpose: PRCHAR allows the user to change the characters used in
 printing the grid.

 Calling Sequences:

 Assembly: CALL PRCHAR,(arg)

 FORTRAN: CALL PRCHAR(arg)

 Parameter:

 arg is the location of a fullword integer whose ___
 bytes are used to define the grid character.
 The bytes are used as follows:

 byte 0: intersection character (initially +)
 byte 1: horizontal line character (initially -)
 byte 2: vertical line character (initially I)
 byte 3: fill character (initially blank)

 A X’00’ in any byte indicates that no change is
 to be made to that character.

 Return Code:

 None.

 Description: Changes made by a call to this subroutine affect all plots
 starting with the next call to PLOT2, STPLT1, STPLT2, or
 PREND.

 Example: FORTRAN: INTEGER CHARS/Z00004F00/
 ...
 CALL PRCHAR(CHARS)

 The above example changes the vertical line character to
 "|" (vertical bar), and leaves the other three characters
 unchanged.

 386 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 PREND _____

 Purpose: PREND constructs and prints a plot using the points saved
 by PRPLOT. Values are printed along the X- and Y-axes,
 and a centered label is printed on the left-hand side.
 See the description of PRPLOT.

 Calling Sequences:

 Assembly: CALL PREND,(nchar,label)

 FORTRAN: CALL PREND(nchar,label,&rc4,&rc8)

 Parameters:

 nchar is the location of a fullword integer giving _____
 the number of characters in the vertical
 label. If this is less than or equal to
 zero, no label will be printed.
 label is the location of a region containing the _____
 label.
 rc4,rc8 (optional) are the statement labels to trans- _______
 fer to if a nonzero return code occurs.

 Return Codes:

 0 Normal return.
 4 PRPLOT has not been successfully called.
 8 Log argument ≤ 0 (occurs only when a log scale is
 used).

 Printer Plot Routines 387

 MTS 3: System Subroutine Descriptions

 April 1981

 PRPLOT ______

 Purpose: PRPLOT collects points to be plotted by a subsequent call
 to PREND.

 Calling Sequences:

 Assembly: CALL PRPLOT,(bcd,x,y,ndata,int)

 FORTRAN: CALL PRPLOT(bcd,x,y,ndata,int,&rc4)

 Parameters:

 bcd is the location of the plotting character to ___
 be used.
 x is the location of a floating-point region of _
 X values.
 y is the location of a floating-point region of _
 Y values.
 ndata is the location of the fullword integer _____
 number of points.
 int is the location of the fullword integer ___
 number of bytes between the addresses of
 successive coordinate values. For a short
 form vector (REAL*4), this is 4. int should ___
 be a multiple of 4.
 rc4 (optional) is the statement label to transfer ___
 to if a a nonzero return code occurs.

 Return Codes:

 0 Normal return.
 4 int is not a multiple of 4. ___

 Description: PRPLOT saves points to be plotted; PREND determines the
 minima and maxima and constructs the actual plot. PRPLOT
 may be called many times before calling PREND. PRPLOT
 allows the user to obtain a printer plot without knowing
 in advance how many points will be accumulated or what the
 minimum and maximum X and Y values will be. It is least _____
 efficient (in terms of CPU time) to call PRPLOT for one
 point at a time. When plotting in log mode, points for
 which the logarithm is undefined will be ignored.

 Example: FORTRAN: REAL X(10),Y(10)
 INTEGER LABEL(2),/’A LA’,’BEL’/
 X(1) = 1.
 Y(1) = 2.
 DO 1 I=2,10
 X(I) = X(I-1)+1.
 1 Y(I) = 2.*X(I)

 388 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 CALL PRPLOT(’*’,X(1),Y(1),3,4,&4)
 CALL PRPLOT(’<’,X(4),Y(4),7,4,&4)
 CALL PREND(7,LABEL(1))
 CALL SYSTEM
 4 CALL ERROR

 Printer Plot Routines 389

 MTS 3: System Subroutine Descriptions

 April 1981

 STPLT1 ______

 Purpose: STPLT1 is called by the user who wishes the plot routine
 to inspect his data and then make appropriate calls on
 PLOT1 and PLOT2. The default grid size (see PLOT2) is
 always used, but the scaling and decimal places to be
 printed are determined by STPLT1. The user must call on
 PLOT3 and PLOT4 to have the graph printed.

 Calling Sequences:

 Assembly: CALL STPLT1,(image,x,y,ndata,int)

 FORTRAN: CALL STPLT1(image,x,y,ndata,int,&rc4,&rc8,
 &rc12,&rc16,&rc20,&rc24,&rc28)

 Parameters:

 See the descriptions of PLOT1, PLOT2, PLOT3, and
 PLOT4 for the parameters and return codes used.

 Description: STPLT1 will cause grid values to be printed in FORTRAN
 E-type format when necessary.

 390 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 STPLT2 ______

 Purpose: STPLT2 does the work of STPLT1 and in addition calls on
 PLOT3 and PLOT4 to print the graph.

 Calling Sequences:

 Assembly: CALL STPLT2,(image,x,y,ndata,int,bcd,nchar,
 label)

 FORTRAN: CALL STPLT2(image,x,y,ndata,int,bcd,nchar,label,
 &rc4,&rc8,&rc12,&rc16,&rc20,&rc24,
 &rc28)

 Parameters:

 See the descriptions of PLOT1, PLOT2, PLOT3, PLOT4,
 and STPLT1 for the parameters and return codes used.

 Printer Plot Routines 391

 MTS 3: System Subroutine Descriptions

 April 1981

 SETLOG ______

 Purpose: SETLOG is called by the user to specify whether he wants a
 normal, semi-log, or log-log plot.

 Calling Sequences:

 Assembly: CALL SETLOG,(arg)

 FORTRAN: CALL SETLOG(arg,&rc4)

 Parameters:

 arg is the location of a byte with bits 6 and 7 ___
 interpreted as follows:

 bit 7 0 Y scale is normal.
 1 Y scale is logarithmic.
 bit 6 0 X scale is normal.
 1 X scale is logarithmic.

 The plotting mode is initially set to normal.

 rc4 (optional) is a statement label to transfer to ___
 if a nonzero return code occurs.

 Return Codes:

 0 Normal return.
 4 Mode not changed.

 Description: If PLOT2 or STPLT1 has been called, but the graph has not
 yet been printed by PLOT4, or if PRPLOT has been called,
 and has not yet been followed by a call to PREND, the
 plotting mode will not be changed. This is because the
 grid has already been set up. Base 10 logarithms are used
 for the grid.

 Example: FORTRAN: LOGICAL*1 XLOG/Z02/,YLOG/Z01/,XYLOG/Z03/
 ...
 CALL SETLOG(XLOG) Plot with log X, normal Y
 ...
 CALL SETLOG(YLOG) Plot with log Y, normal X
 ...
 CALL SETLOG(XYLOG) Log-log plot
 ...
 CALL SETLOG(0) Normal plot

 392 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 OMIT ____

 Purpose: OMIT is called by the user to specify whether the last
 graph line, the vertical grid values, and the horizontal
 grid values will be printed.

 Calling Sequences:

 Assembly: CALL OMIT,(arg)

 FORTRAN: CALL OMIT(arg)

 Parameters:

 arg is the location of a fullword integer inter- ___
 preted as follows: if arg is positive, the ___
 function designated by the appropriate bit is
 turned off. To turn it back on, arg is made ___
 negative and OMIT is called again.

 bit 28 scaling factor messages (PRPLOT, STPLT1
 only).
 bit 29 the last graph line.
 bit 30 vertical grid values.
 bit 31 horizontal grid values.

 Return Code:

 None.

 Description: A graph can be produced by producing the graph in pieces,
 deleting the horizontal grid values and the last graph
 line (arg=5) for each piece except the last, and starting ___
 the next graph segment where the last graph line would
 have been printed. When the last segment is to be
 printed, OMIT can be called (arg=-5) to restore the ___
 functions. Initially, all four functions are turned on.

 If STPLT1 or PRPLOT scales the X or Y values, a message is
 normally printed stating what was done. Bit 28 of arg ___
 controls the printing of this message.

 Printer Plot Routines 393

 MTS 3: System Subroutine Descriptions

 April 1981

 394 Printer Plot Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 QUIT ____

 Subroutine Description

 Purpose: To cause the user to be signed off when the next MTS
 command is encountered.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL QUIT

 or

 QUIT [WHO={BATCH|ALL},][WHEN={NOW|LATER}]

 FORTRAN: CALL QUIT

 Return Codes:

 None.

 Note: The complete description for using the QUIT macro
 is given in MTS Volume 14, 360/370 Assemblers in _______________________
 MTS. Additional parameters may be given to the ___
 QUIT macro to control whether the subroutine is
 called in batch mode only and whether the effect
 is immediate.

 Description: This subroutine does not cause the user to be signed off ___
 immediately. It does set a flag so that the next time the
 user returns to MTS command mode (due to termination of
 execution, attention interrupt, etc.) the effect will be
 the same as if the user entered a $SIGNOFF command.

 It is also possible to use

 CALL CMD(’$SIGNOFF ’,9)

 which does cause the user to be signed off immediately.

 Calling the QUIT subroutine has the same effect as using
 the OFFBIT item of the GUINFO/CUINFO subroutine. The
 effect of calling the QUIT subroutine may be disabled by
 calling the CUINFO subroutine to reset the OFFBIT item to
 zero.

 QUIT 395

 MTS 3: System Subroutine Descriptions

 April 1981

 396 QUIT

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 RCALL _____

 Subroutine Description

 Purpose: To call R-type subroutines (such as GETFD) from FORTRAN.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL RCALL(a,m,ir(1),...,ir(m),n,rr(1),...,
 rr(n),&rc4,...)

 Parameters:

 a is the address of the R-type subroutine which is _
 to be called. This should be declared EXTERNAL.
 m is the fullword integer number of general regis- _
 ters starting with GR0 to be set up prior to
 calling the R-type subroutine. m may range _
 between 0 and 13, inclusive.
 ir(1),...,ir(m) are the values to be placed in GR0 _______________
 through GR(m-1) respectively. These parameters _
 must be fullword-aligned and four bytes in
 length.
 n is the fullword integer number of general regis- _
 ters starting with GR0 to be stored after
 calling the R-type subroutine. n may range _
 between 0 and 13, inclusive.
 rr(1),...,rr(n) are the n variables into which the _______________ _
 contents of GR0 through GR(n-1) will be stored _
 after calling the R-type subroutine. These
 parameters must be fullword-aligned and four
 bytes in length.
 rc4,... is the statement label to transfer to upon _______
 receiving a nonzero return code from the sub-
 routine called via RCALL.

 Return Codes:

 The return code from RCALL is identical to the return
 code returned by the R-type subroutine. The contents
 of the general registers have been returned after the
 R-type subroutine call as specified by the
 parameters.

 Description: The general registers starting with 0 are set up as
 specified by the parameter list. The second parameter
 specifies the number of registers to be set up, and the
 parameters following specify the values to be placed into

 RCALL 397

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 the registers. The R-type subroutine is called, and when
 it returns, the general registers starting with 0 are
 stored as specified by the parameter list. The return
 code is as returned by the R-type subroutine.

 Many R-type subroutines require that addresses be placed
 in registers before calling them. These addresses can be
 computed by using the subroutine ADROF. See the ADROF
 subroutine description in this volume.

 If the subroutine also requires an S-type parameter list,
 the address of the parameter list must be placed in GR1.
 This may be done by using the ADROF subroutine where the
 argument to ADROF is a scalar variable for a single-
 element parameter list or an array for a multiple-element
 parameter list.

 Example: FORTRAN: EXTERNAL GETFD
 INTEGER*4 ADROF,FDUB
 CALL RCALL(GETFD,2,0,ADROF(’name ’),1,FDUB,&9)

 This example calls GETFD with GR0 containing a zero and
 GR1 containing the address of the character string "name".
 GETFD returns the FDUB-pointer in GR0, and this is stored
 in the variable FDUB. A return code of four from GETFD
 will cause control to be transferred to statement 9 of the
 FORTRAN program.

 FORTRAN: EXTERNAL CHKFIL
| INTEGER*4 ADROF,X,PAR
 DATA MASK/Z00000001/
 PAR = ADROF(’2AGA:DATAFILE ’)
 CALL RCALL(CHKFIL,2,0,ADROF(PAR),1,X,&100)
 X = LAND(X,MASK)
 IF(X.EQ.1) GO TO 10

 This example illustrates a call to the subroutine CHKFIL
 which uses both an S-type calling sequence parameter list
 and a R-type return of a value. In this case, the first
 parameter to CHKFIL is the location of the name of a file.

 398 RCALL

 MTS 3: System Subroutine Descriptions

 April 1981

 READ ____

 Subroutine Description

 Purpose: To read an input record from a specified logical I/O unit.

 Location: Resident System

 Alt. Entry: MTSREAD, READ#

 Calling Sequences:

 Assembly: CALL READ,(reg,len,mod,lnum,unit)

 FORTRAN: CALL READ(reg,len,mod,lnum,unit,&rc4,...)

 Parameters:

 reg is the location of the virtual memory region to ___
 which data is to be transmitted.
 len is the location of a halfword (INTEGER*2) inte- ___
 ger in which is placed the number of bytes read.
 mod is the location of a fullword of modifier bits ___
 used to control the action of the subroutine.
 If mod is zero, no modifier bits are specified. ___
 See the "I/O Modifiers" description in this
 volume.
 lnum is the location of a fullword integer giving the ____
 internal representation of the line number that
 is to be read or has been read by the sub-
 routine. The internal form of the line number
 is the external form times 1000, e.g., the
 internal form of line 1 is 1000, and the
 internal form of line .001 is 1.
 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 rc4,... is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 READ 399

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 Successful return.
 4 End-of-file.
 >4 See the "I/O Subroutine Return Codes" description
 in this volume.

 Description: All five of the parameters in the calling sequence are
 required. The subroutine reads a record from the I/O unit
 specified by unit into the region specified by reg and ____ ___
 puts the length of the record (in bytes) into the location
 specified by len. If the mod parameter (or the FDname ___ ___
 modifier) specifies the INDEXED bit, the lnum parameter ____
 must specify the line number to be read. Otherwise, the
 subroutine will put the line number of the record read
 into the location specified by lnum. ____

 If the @MAXLEN FDname I/O modifier is specified, the len ___
 parameter is three halfwords which give the number of
 bytes actually read, the maximum number of bytes to be
 read, and the physical length of the record read. See the
 description of the @MAXLEN FDname I/O modifier in the
 section "I/O Modifiers" in this volume.

 There are no default FDnames for READ.

 Note that the contents of the input area reg may be ___
 changed even if the subroutine gives a nonzero return
 code.

 There is a macro READ in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for READ in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Examples: The example below, given in assembly language and FORTRAN,
 calls READ specifying an input region of 20 fullwords.
 The logical I/O unit specified is 5 and there is no
 modifier specification made in the subroutine call.

 Assembly: CALL READ,(REG,LEN,MOD,LNUM,UNIT)
 .
 .
 REG DS CL80
 LEN DS H
 MOD DC F’0’
 LNUM DS F
 UNIT DC F’5’

 or

 READ 5,REG,LEN Subr. call using macro

 400 READ

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: INTEGER*2 LEN
 INTEGER REG(20),LNUM
 ...
 CALL READ(REG,LEN,0,LNUM,5,&30)
 ...
 30 ...

 The example below, given in assembly language and FORTRAN,
 sets up a call to READ specifying that the input will be
 read from the file FYLE.

 Assembly: LA 1,=C’FYLE ’
 CALL GETFD
 ST 0,UNIT
 .
 .
 CALL READ,(REG,LEN,MOD,LNUM,UNIT)
 .
 .
 REG DS 20F
 LEN DS H
 MOD DC F’0’
 LNUM DS F
 UNIT DS F

 FORTRAN: EXTERNAL GETFD
 INTEGER*4 ADROF,UNIT
 CALL RCALL(GETFD,2,0,ADROF(’FYLE ’),1,UNIT)
 ...
 CALL READ(REG,LEN,0,LNUM,UNIT,&30)
 ...
 30 ...

 READ 401

 MTS 3: System Subroutine Descriptions

 April 1981

 402 READ

 MTS 3: System Subroutine Descriptions

 April 1981

 READBFR _______

 Subroutine Description

 Purpose: To allow programs to read from an arbitrary file or device
 without knowing the maximum record length in advance.

 Location: *LIBRARY

 Calling Sequence:

 Assembly: CALL READBFR,MF=(E,pars)

 The MF form of the CALL macro is normally used to
 call this subroutine. The MF form generates the code
 to call the subroutine without generating the actual
 parameter list (see the description of the CALL macro
 in MTS Volume 14 for complete details).

 Parameters:

 pars is the location of a remote parameter list ____
 suitable for calling the READ subroutine. The
 first parameter in the list, the input area
 address, must be set to zero on the first call
 to READBFR.

 Return Codes:

 0 Successful return.
 4 End-of-file return.
 >4 See the "I/O Subroutine Return Codes" section in
 this volume.

 Description: If the first parameter of the remote parameter list is
 zero, the subroutine READBFR will internally call the
 subroutine GDINFO to determine the length of the longest
 record that can be read from the file, device, or logical
 I/O unit and will allocate a buffer that is large enough
 to accommodate it; the address of this buffer will be
 stored into the first parameter location in place of the
 zero. The READ subroutine will then be called internally
 to read a record using the READBFR parameter list as the
 parameter list for READ; the NOTIFY modifier will also be
 set for the read operation.

 If the first parameter location is not zero (usually on
 the second and subsequent calls to READBFR), READBFR will
 call READ directly using the READBFR parameter list and
 setting the NOTIFY modifier.

 READBFR 403

 MTS 3: System Subroutine Descriptions

 April 1981

 If the file or device attached changes, READBFR will
 release the current buffer and allocate a new buffer of
 the appropriate size and will store the address of the new
 buffer into the first parameter location.

 Note: If the maximum input length of the file or device
 changes without concatenation, this subroutine may not
 have a buffer large enough for all cases, e.g., if another
 FDUB is used to write a line into the file that is longer
 than the current maximum line length.

 Example: Assembly: LABEL CALL READBFR,MF=(E,PARS),EXIT=EOF
 L 1,PARS Get address of buffer
 .
 . Process record
 .
 B LABEL
 EOF L 1,PARS Release buffer
 CALL FREESPAC
 .
 .
 PARS READ ’SCARDS’,,LEN,MF=L
 LEN DS H

 The above example reads records from SCARDS until a
 nonzero return code is encountered. After each call to
 READBFR, PARS contains the location of the record read.
 When a nonzero return code is encountered, the buffer is
 released by calling FREESPAC. The MF=L form of the READ
 macro generates the parameter list to the READ subroutine
 without generating the code to call the READ subroutine.
 This parameter list is then used as the remote parameter
 list for the READBFR subroutine.

 404 READBFR

 MTS 3: System Subroutine Descriptions

 April 1981

 RENAME ______

 Subroutine Description

 Purpose: To change the name of a file.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL RENAME,(oldname,newname)

 FORTRAN: CALL RENAME(oldname,newname,&rc4,&rc8,&rc12,
 &rc16,&rc20,&rc24,&rc28,&rc32,&rc36)

 Parameters:

 oldname is the location of the old name (with a _______
 trailing blank) of the file to be renamed.
 newname is the location of the new name (with a _______
 trailing blank).
 rc4,...,rc36 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 The file was renamed successfully.
 4 Illegal old name specified.
 8 Old name does not exist.
 12 Rename access not permitted (old file name).
 16 Locking the file for renaming will result in a
 deadlock.
 20 Illegal new name specified.
 24 New name already exists.
 28 Disk space allotment exceeded.
 32 Hardware error or software inconsistency
 encountered.
 36 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent
 usage of the shared file).

 Notes: Temporary as well as permanent old file names may
 be renamed.

 The old file name may belong to another user.

 The new file name may not specify a file belonging
 to another signon ID unless the old file name also
 belonged to that same signon ID (and rename access
 was permitted).

 RENAME 405

 MTS 3: System Subroutine Descriptions

 April 1981

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from RENAME with a return code of 36.

 If the old file belongs to another signon ID and
 the new file name specifies a file belonging to
 the ID currently signed on, the owner of the file
 is changed to the current ID if there is suffi-
 cient disk space allotted.

 If the old file is a temporary file and the new
 file name specifies a permanent file, the file
 becomes a permanent file if there is sufficient
 disk space allotted.

 If the old file is a permanent file and the new
 file name specifies a temporary file, the file
 becomes a temporary file and is destroyed at
 signoff.

 Examples: Assembly: CALL RENAME,(OLDNAME,NEWNAME)
 .
 .
 OLDNAME DC C’-TEST ’
 NEWNAME DC C’TEST.0 ’

 The above example renames the temporary file -TEST to the
 permanent file TEST.0.

 FORTRAN: CALL RENAME(’STAT:TEST ’,’MYTEST ’)

 The above example renames the file TEST under the signon
 ID STAT to the file MYTEST under the calling signon ID.
 After the renaming has occurred, the file STAT:TEST will
 no longer exist under the signon ID STAT and the disk
 storage in use by that signon ID will have been updated
 accordingly.

 406 RENAME

 MTS 3: System Subroutine Descriptions

 April 1981

 RENUMB ______

 Subroutine Description

 Purpose: To renumber all or a subset of the lines in a line file. ____

 Location: Resident System

 Calling Sequence:

 Assembly CALL RENUMB,(unit,first,last,beg,inc)

 FORTRAN: CALL RENUMB(unit,first,last,beg,inc,&rc4,&rc8,
 &rc12,&rc16,&rc20,&rc24,&rc28)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 first is the location of a fullword containing the _____
 internal line number of the first line to be
 renumbered.
 last is the location of a fullword containing the ____
 internal line number of the last line to be
 renumbered.
 beg is the location of a fullword containing the ___
 new internal line number to be associated ___
 with the first line to be renumbered.
 inc is the location of a fullword containing the ___
 internal increment to be used while renumber-
 ing the requested lines in the file.
 rc4,...,rc28 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 The file was renumbered successfully.
 4 The file does not exist or unit is invalid. ____
 8 Hardware error or software inconsistency
 encountered.
 12 Renumber (or read-write) access not allowed.
 16 Locking the file for modification will result in a
 deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent

 RENUMB 407

 MTS 3: System Subroutine Descriptions

 April 1981

 usage of the shared file).
 24 Parameters not addressable or inconsistent parame-
 ters specified (renumbering will cause duplicate
 or nonincreasing line numbers, etc.).
 28 The file is not a line file.
 32 Invalid increment specified.

 Notes: If first and last do not correspond to actual line _____ ____
 numbers in the file, the next and previous line
 numbers will be used respectively.

 In MTS, the internal line number (e.g., 2100) is
 equal to the external line number (e.g., 2.1)
 times one thousand.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from RENUMB with a return code of 20.

 Examples: Assembly: CALL GETFST,(UNIT,FSTLN)
 CALL GETLST,(UNIT,LSTLN)
 CALL RENUMB,(UNIT,FSTLN,LSTLN,BEGLN,INC)
 .
 .
 UNIT DC F’4’
 FSTLN DS F First line number
 LSTLN DS F Last line number
 BEGLN DC F’1000’ 1 in internal form
 INC DC F’1000’ 1 in internal form

 FORTRAN: INTEGER*4 UT
 DATA UT/4/
 ...
 CALL RENUMB(UT,-2147483648,2147483647,1000,1000)

 The above examples illustrate two ways to renumber all of
 the lines of the line file attached to logical I/O unit 4.
 The lines are renumbered starting at line 1 by increments
 of 1.

 408 RENUMB

 MTS 3: System Subroutine Descriptions

 April 1981

 RETLNR ______

 Subroutine Description

 Purpose: To return all or a subset of the line numbers in a line
 file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL RETLNR,(unit,first,last,cnt,buffer)

 FORTRAN: CALL RETLNR(unit,first,last,cnt,buffer,&rc4,
 &rc8,&rc12,&rc16,&rc20,&rc24,&rc28,
 &rc32)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 first is the location of a fullword containing the _____
 internal line number of the first line number
 to be returned.
 last is the location of a fullword containing the ____
 internal line number of the last line number
 to be returned.
 cnt is the location of a fullword in which the ___
 count of the number of lines in the specified
 range will be returned.
 buffer is the location of a buffer. The buffer is ______
 supplied by the caller; bytes 8 and on are
 filled in by the subroutine. This buffer
 should be of the form:

 bytes 0-3 pointer to next buffer or zero.
 bytes 4-7 length of this buffer in bytes
 (including first 8 bytes).
 bytes 8-... returned line numbers (4 bytes
 each).

 rc4,...,rc32 (optional) is a statement label to ____________
 transfer to if a nonzero return code occurs.

 RETLNR 409

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 The line numbers were returned.
 4 The file does not exist or unit is invalid. ____
 8 Hardware error or software inconsistency
 encountered.
 12 Read or renumber access not allowed.
 16 Locking the file for reading will result in a
 deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent use
 of the shared file).
 24 Parameters not addressable or inconsistent parame-
 ters specified (first greater than last, etc.). _____ ____
 28 The file is not a line file.
 32 Buffers exhausted before line-number range was
 exhausted.

 Notes: If first and last do not correspond to actual line _____ ____
 numbers in the file, the next and previous line
 numbers, respectively, will be used.

 In MTS, the internal line number (e.g., 2100) is
 equal to the external line number (e.g., 2.1)
 times one thousand.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from RENUMB with a return code of 20.

 Examples: Assembly: CALL GETFST,(UNIT,FSTLNR)
 CALL GETLST,(UNIT,LSTLNR)
 CALL RETLNR,(UNIT,FSTLNR,LSTLNR,CNT,BUFF)
 .
 .
 UNIT DC F’4’
 FSTLNR DS F First line number
 LSTLNR DS F Last line number
 CNT DS F Count of lines in file
 BUFF DC F’0’ The only buffer
 DC F’808’ This many bytes
 DS 200F Line numbers go here

 The above example illustrates how to return all of the
 line numbers of the line file attached to logical I/O unit
 4 (assuming there are less than 200 lines in the file).

 410 RETLNR

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: INTEGER*4 UNIT,FSTLNR,LSTLNR,CNT,$I4(1),LNR
 COMMON /$/ $I4
 DATA UNIT/4/
 ...
 CALL GETFST(UNIT,FSTLNR)
 CALL GETLST(UNIT,LSTLNR)
 CALL CNTLNR(UNIT,FSTLNR,LSTLNR,CNT)
 ...
 CALL ARINIT(1,1)
 CALL ARRAY(LNR,4,CNT+2)
 $I4(LNR+1)=0
 $I4(LNR+2)=CNT*4+8
 CALL RETLNR(UNIT,FSTLNR,LSTLNR,CNT,$I4(LNR+1))

 The above example illustrates how to return all of the
 line numbers of a line file attached to logical I/O unit 4
 (using the FORTRAN array management subroutines to dynami-
 cally allocate a buffer).

 RETLNR 411

 MTS 3: System Subroutine Descriptions

 April 1981

 412 RETLNR

 MTS 3: System Subroutine Descriptions

 April 1981

 REWIND ______

 Subroutine Description

 Purpose: To rewind a logical I/O unit in FORTRAN.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL REWIND(unit)

 Parameters:

 unit is the location of a fullword integer corre- ____
 sponding to the logical I/O unit number to be
 rewound. These are 0 through 99.

 Description: If the logical I/O unit number specified by unit is ____
 attached to a magnetic tape, it is rewound. If it is
 attached to a line file, it is reset so that the next
 sequential reference to it will read or write the line
 specified by the beginning line number given when the file
 was attached. If it is attached to a sequential file, or
 a floppy disk, it is reset so that the next reference to
 it will read or write from the beginning of the file. In
 all other cases, an error comment is produced on the
 logical I/O unit SERCOM, and the subroutine ERROR is
 called.

 If the logical I/O unit specified by unit is part of an ____
 explicit or implicit concatenation, only the currently
 active member is rewound.

 The REWIND subroutine generates a call to the REWIND#
 subroutine.

 Example: FORTRAN: CALL REWIND(1)

 The file or device attached to logical I/O unit 1 is
 rewound.

 REWIND 413

 MTS 3: System Subroutine Descriptions

 April 1981

 414 REWIND

 MTS 3: System Subroutine Descriptions

 April 1981

 REWIND# _______

 Subroutine Description

 Purpose: The rewind a line file, a sequential file, a magnetic
 tape, or a floppy disk.

 Location: Resident System

 Calling Sequences:

 Assembly: (a) L 0,unit
 SR 1,1
 CALL REWIND#

 or

 REWIND unit

 (b) LM 0,1,unit
 CALL REWIND#

 or

 REWIND ’unit’

 Parameters:

 (a) GR0 contains an FDUB-pointer (such as GETFD
 returns) or a fullword logical I/O unit number
 (0-19), and GR1 contains zero.
 (b) GR0 and GR1 contain an 8-character logical I/O ____________
 unit name left-justified with trailing blanks. __________
 The logical I/O unit names are: SCARDS, SPRINT,
 SPUNCH, SERCOM, GUSER, and 0 through 99.

 Return Codes:

 0 Successful return.
 4 Unable to rewind the device specified by GR0 and
 GR1.

 Notes: The complete description for using the REWIND
 macro is given in MTS Volume 14, 360/370 Assem- _______________
 blers in MTS. ____________

 FORTRAN programs should use the REWIND subroutine
 which is described in this volume.

 REWIND# 415

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: If GR0 and GR1 specify a magnetic tape, it is rewound. If
 they specify a line file, it is reset so that if the next
 reference to this FDUB or logical I/O unit is sequential,
 it will read or write the line specified by the beginning
 line number given when the file was attached. If they
 specify a sequential file or a floppy disk, the FDUB is
 reset so that the next read or write will be at the
 beginning of the file. For all other cases, a return code
 of 4 is given.

 If the logical I/O unit or FDUB-pointer specified by GR0
 and GR1 is part of an explicit or implicit concatenation,
 only the currently active member is rewound.

 Example: Assembly: LM 0,1,LNAME
 CALL REWIND#
 .
 .
 LNAME DC CL8’SPRINT ’

 REWIND ’SPRINT’

 The above two examples reset the magnetic tape or file
 attached to the logical I/O unit SPRINT. The first uses
 the CALL macro and the second uses the REWIND macro.

 416 REWIND#

 MTS 3: System Subroutine Descriptions

 April 1981

 RSSAS _____

 Subroutine Description

 Purpose: To reset *SOURCE* to *MSOURCE* and *SINK* to *MSINK*.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL RSSAS,(sws),VL

 FORTRAN: CALL RSSAS(sws)

 Parameters:

 sws is the location of a fullword integer specifying ___
 what is to be reset. The legal values are:

 0 both *SOURCE* and *SINK* are reset.
 1 only *SOURCE* is reset.
 2 only *SINK* is reset.

 Return Codes:

 0 Successful return.
 4 Nothing is reset (SIGFILEATTN or the project
 sigfile attention bit is OFF and a sigfile is
 being processed).
 8 Invalid parameter.

 Description: The RSSAS subroutine may be used by interactive programs
 to reset *SOURCE* and/or *SINK* when an attention inter-
 rupt is received and *SOURCE* is not the same as *MSOURCE*
 or *SINK* is not the same as *MSINK*. This action is
 similar to the action taken by MTS when an attention
 interrupt is received while reading commands from a file
 as the result of the $SOURCE command.

 Example: Assembly: LA 1,FNAME
 CALL GETFD Get FDUB for *MSOURCE*
 ST 0,FDUB
 .
 .
 LM 0,1,=A(EXIT,REGN)
 CALL ATTNTRP Enable attn intercept
 .
 .
 USING EXIT,10
 EXIT LR 10,15

 RSSAS 417

 MTS 3: System Subroutine Descriptions

 April 1981

 LA 0,EXIT
 CALL CFDUB,(SCRDS,FDUB) Compare FDUBs
 LTR 15,15
 BE EXITA Same
 CALL RSSAS,(SWS),VL Reset *SOURCE*
 EXITA MVI 0(1),X’FF’
 CALL ATTNTRP Reenable intercept
 .
 .
 FNAME DC C’*MSOURCE* ’
 SCRDS DC C’SCARDS ’
 FDUB DS F
 SWS DC F’1’
 REGN DS 18F

 FORTRAN: EXTERNAL GETFD
 INTEGER ADROF,FDUB
 LOGICAL ATTN
 ...
 CALL RCALL(GETFD,2,0,ADROF(’*MSOURCE* ’),
 C 2,DUMMY,FDUB)
 ...
 CALL ATNTRP(ATTN)
 ...
 10 IF (ATTN) GO TO 20
 ...
 ... Program loop
 ...
 GO TO 10
 20 CALL ATNTRP(ATTN)
 CALL CFDUB(’SCARDS ’,FDUB,&30)
 GO TO 10
 30 CALL RSSAS(1)
 GO TO 10

 The above examples, coded both in assembler and FORTRAN,
 reset SCARDS to *MSOURCE* if an attention interrupt is
 taken during the program loop. GETFD is called to get an
 FDUB-pointer for *MSOURCE* which is subsequently tested by
 CFDUB against the current assignment of SCARDS; if they
 are different, RSSAS is called to reset *SOURCE* (the
 SCARDS assignment) to *MSOURCE*.

 418 RSSAS

 MTS 3: System Subroutine Descriptions

 April 1981

 RSTIME ______

 Subroutine Description

 Purpose: To cancel timer interrupts set up by the SETIME subroutine
 and return the time remaining until the interrupt would
 have occurred.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL RSTIME,(id,value,aregion)

 FORTRAN: CALL RSTIME(id,value,aregion,&rc4)

 Parameters:

 id is the location of the fullword identifier __
 which specifies the timer interrupt to be
 canceled. This is the same identifier which
 was given to SETIME when the interrupt was
 set up. If this identifier is zero, all
 timer interrupts with the specified exit
 region will be canceled.
 value is the location of a 4-, 8-, or 16-byte _____
 fullword-aligned region in which RSTIME re-
 turns the time remaining until the interrupt
 would have occurred. The interpretation of
 this value depends upon the code parameter ____
 given to SETIME when the interrupt was set
 up. For codes 0 and 2, the value is an
 8-byte binary integer specifying microseconds
 of task CPU time; for codes 1, 3, and 5, the
 value is an 8-byte binary integer specifying
 microseconds of real time; for code 4, the
 value is a 4-byte binary integer specifying
 timer units of task CPU time.
 aregion is the location of the address of the 76-byte _______
 exit region which was given to SETIME when
 the interrupt was set up. The combination of
 the identifier and the exit region address
 will always specify a unique timer interrupt.
 If both aregion and id are zero, all timer _______ __
 interrupts will be canceled.
 rc4 (optional) is the statement label to transfer ___
 to if a nonzero return code occurs.

 RSTIME 419

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 Successful return.
 4 No such timer interrupt was found. This means
 either
 (1) no such interrupt was ever set up, or
 (2) the interrupt has occurred, and the exit was
 taken before the execution of the BALR in-
 struction which branches to RSTIME.

 Description: A call on the RSTIME subroutine cancels a timer interrupt
 set up by the SETIME subroutine, and returns the time
 remaining until the interrupt would have occurred in the
 value parameter. The timer interrupt to be canceled is _____
 specified by the combination of the id and aregion __ _______
 parameters. The interrupt will be canceled even if it has
 already occurred and is pending.

 For further details, see also the GETIME, SETIME, and
 TIMNTRP subroutine descriptions.

 FORTRAN users should consult the TICALL subroutine de-
 scription in this volume for details on using timer
 interrupts with FORTRAN.

 Example: Assembly: CALL RSTIME,(ONE,TIMLEFT,AREG)
 .
 .
 ONE DC F’1’
 TIMLEFT DS FL8
 AREG DC A(EXIT)
 REG DS 19F

 FORTRAN: INTEGER TICALL
 EXTERNAL EXIT
 INTEGER TIME(2),/0,10000/,LEFT(2)
 IREG = TICALL(0,EXIT,TIME,&4,&8)
 CALL RSTIME(EXIT,LEFT,IREG,&4)

 The above example, coded in assembly language and FORTRAN,
 cancels the interrupt with the identifier 1 and the exit
 region REG. The time remaining is returned in TIMLEFT.

 420 RSTIME

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 SCANSTOR ________

 Subroutine Description

 Purpose: To "scan" storage blocks. For each block of allocated
 storage in the range specified, SCANSTOR will call a
 subroutine specified, giving it the location and length of
 that block.

 Location: Resident System

| Alt. Entries: SSTOR, SCANSTOS, SCNSTS

 Calling Sequences:

 Assembly: L 0,switch
 L 1,sinbr
 L 2,subr
 CALL SCANSTOR

| CALL SCANSTOS,(switch,sinbr,subr),VL
|
| FORTRAN: CALL SCNSTS(switch,sinbr,subr,&rc4)

 Parameters:

| switch (GR0) controls the scanning. ______
| if 0, only storage with the specified stor-
| age index number (sinbr). _____
| if +1, storage with index numbers less than
| or equal to the one given (this and
| lower link levels).
| if -1, storage with index numbers greater
| than or equal to the one given (this
| and higher link levels).
| sinbr (GR1) storage index number or zero. If zero, _____
| the storage index number of the current link
| level will be used.
| subr (GR2) location of the subroutine to call for ____
| each block. When this call is made, GR0 will
| have the length, GR1 will have the location
| of the block, and GR2 will have the storage
| index number of the block. This call con-
| forms to the OS R-type calling convention.

 Return Codes:

| 0 Successful return.
| 4 Invalid parameter (no VL bit specified).

 SCANSTOR 421

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

| Description: A call on the SCANSTOS or SCNSTS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the SCANSTOR subroutine.
|
| For a further description of storage index numbers, see
 the "Virtual Memory Management" section in MTS Volume 5,
 System Services. _______________

 Examples: Assembly: LA 0,1
 SR 1,1
 LA 2,MYDUMP
 L 15,=V(SCANSTOR)
 BALR 14,15

 or

 LM 0,2,SPAR
 CALL SCANSTOR
 .
 .
 SPAR DC A(1,0,MYDUMP)

| FORTRAN: COMMON /DUMP/ MYDUMP
| CALL SCNSTS(1,0,MYDUMP,&4)

 The above example, coded in assembly language and FORTRAN,
 calls SCANSTOR specifying that storage is to be scanned
 which has storage index numbers equal to or less than the
 current link level storage index number.

 422 SCANSTOR

 MTS 3: System Subroutine Descriptions

 April 1981

 SCARDS ______

 Subroutine Description

 Purpose: To read an input record from the logical I/O unit SCARDS.

 Location: Resident System

 Alt. Entry: SCARDS#

 Calling Sequences:

 Assembly: CALL SCARDS,(reg,len,mod,lnum)

 FORTRAN: CALL SCARDS(reg,len,mod,lnum,&rc4,...)

 Parameters:

 reg is the location of the virtual memory region to ___
 which data is to be transmitted.
 len is the location of a halfword (INTEGER*2) inte- ___
 ger in which is placed the number of bytes read. _____
 mod is the location of a fullword of modifier bits ___
 used to control the action of the subroutine.
 If mod is zero, no modifier bits are specified. ___
 See the "I/O Modifiers" description in this
 volume.
 lnum is the location of a fullword integer giving the ____
 internal representation of the line number that
 is to be read or has been read by the sub-
 routine. The internal form of the line number
 is the external form times 1000, e.g., the
 internal form of line 1 is 1000, and the
 internal form of line .001 is 1.
 rc4,... is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 Return Codes:

 0 Successful return.
 4 End-of-file.
 >4 See the "I/O Subroutine Return Codes" description
 in this volume.

 Description: All four of the above parameters in the calling sequence
 are required. The subroutine reads a record into the
 region specified by reg and puts the length of record (in ___
 bytes) into the location specified by len. If the mod ___ ___
 parameter (or the FDname modifier) specifies the INDEXED

 SCARDS 423

 MTS 3: System Subroutine Descriptions

 April 1981

 bit, the lnum parameter must specify the line number to be ____
 read. Otherwise, the subroutine will put the line number
 of the record read into the location specified by lnum. ____

 If the @MAXLEN FDname I/O modifier is specified, the len ___
 parameter is three halfwords which give the number of
 bytes actually read, the maximum number of bytes to be
 read, and the physical length of the record read. See the
 description of the @MAXLEN FDname I/O modifier in the
 section "I/O Modifiers" in this volume.

 The default FDname for SCARDS is *SOURCE*.

 Note that the contents of the input area reg may be ___
 changed even if the subroutine gives a nonzero return
 code.

 There is a macro SCARDS in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for SCARDS in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Examples: The example below, given in assembly language and FORTRAN,
 calls SCARDS specifying an input region of 20 fullwords.
 There is no modifier specification made on the subroutine
 call.

 Assembly: CALL SCARDS,(REG,LEN,MOD,LNUM)
 .
 .
 REG DS CL80
 LEN DS H
 MOD DC F’0’
 LNUM DS F

 or

 SCARDS REG,LEN Subr. call using macro

 FORTRAN: INTEGER*2 LEN
 INTEGER REG(20),LNUM
 ...
 CALL SCARDS(REG,LEN,0,LNUM,&30)
 ...
 30 ...

 424 SCARDS

 MTS 3: System Subroutine Descriptions

 April 1981

 Screen-Support Routines _______________________

 Subroutine Description

 Purpose: To provide user-program control for a video-terminal
 screen.

 Location: Resident System

 Description: The screen-support routines have the following entry
 points:

 SSATTR
 SSBGNS
 SSCREF
 SSCTNS
 SSCTRL
 SSCURS
 SSDEFF
 SSDELF
 SSDELS
 SSENDS
 SSINFO
 SSINIT
 SSLOCN
 SSREAD
 SSTERM
 SSTEXT
 SSWRIT

 The complete description of the Screen-Support Routines is
 given in MTS Volume 4, Terminals and Networks in MTS. _____________________________

 Screen-Support Routines 424.1

 MTS 3: System Subroutine Descriptions

 April 1981

 424.2 Screen-Support Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 SDUMP _____

 Subroutine Description

 Purpose: To produce a dump of any or all of the following:

 (1) general registers,
 (2) floating-point registers,
 (3) a specified region of virtual storage.

 Location: Resident System

 Calling Sequences:

 Assembly: EXTRN outsub
 CALL SDUMP,(switch,outsub,wkarea,first,last)

 Parameters:

 switch is the location of a fullword containing ______
 switches that govern the content and format
 of the dump produced. The switches are
 assigned as follows:

 bit 31: on if hexadecimal conversion of the
 storage region is desired.
 30: on if mnemonic conversion of the
 storage region is desired.
 29: on if EBCDIC conversion of the stor-
 age region is desired.
 28: on if double spacing is desired; off
 if single spacing is desired.
 27: on if long output records (130 char-
 acters) are to be formed; off if
 short output records (70 characters)
 are to be formed.
 26: on if general registers are to be
 dumped.
 25: on if floating-point registers are
 to be dumped.
 24: on if a storage region is to be
 dumped.
 23: on if no column headers are to be
 produced for the dump of the storage
 region.

 outsub is the location of a subroutine (e.g., ______
 SPRINT) that causes the printing, punching,
 etc., of the output line images formed by
 SDUMP. This subroutine should be declared as

 SDUMP 425

 MTS 3: System Subroutine Descriptions

 April 1981

 EXTRN.
 wkarea is the location of a doubleword-aligned area ______
 of 400 bytes that may be used by SDUMP as a
 work area.
 first is the location of the first byte of a _____
 storage region to be dumped. There are no
 boundary requirements for this address.
 last is the location of the last byte of a storage ____
 region to be dumped. There are no boundary
 requirements for this address; however, an
 address in last which is less than the ____
 address in first will cause an error return. _____

 Note: The default case for switch (all switches off) ______
 produces a dump as though bits 24, 25, 26, and 31
 were on. Furthermore, if bit 30 (mnemonics) is
 on, bit 31 (hexadecimal) is implied. Note that
 bits 24, 25, and 26 specify what is to be dumped,
 bits 27 and 28 specify the page format, and bits
 29, 30, and 31 specify the interpretation(s) to be
 placed on the region of storage specified. Bits
 29 through 31 have significance only if bit 24 is
 on.

 Return Codes:

 0 Successful return.
 4 Illegal parameters specified.

 Description: Output Formats ______________

 Registers:

 General and floating-point registers, if requested,
 are always given in labeled hexadecimal format. The
 length of the output record is governed by the
 setting of bit 27 of the switch.

 Virtual Storage:

 Although any combination of switches is acceptable, ___
 the appearance of the dump output for a region of
 virtual storage is determined as follows:

 (1) If, and only if, the mnemonic switch is on, the __
 unit of storage presented in each print item is
 a halfword-aligned halfword.

 (2) If, and only if, the mnemonic switch is off and ___
 the hexadecimal switch is on (through intent or __
 default), the unit of storage presented in each
 print item is a fullword-aligned fullword.

 426 SDUMP

 MTS 3: System Subroutine Descriptions

 April 1981

 (3) If, and only if, the mnemonic and hexadecimal
 switches are off but the EBCDIC switch is on, ___ __
 the unit of storage presented in each print item
 is a doubleword-aligned doubleword.

 In all cases, the output includes:

 (1) the entire storage unit (halfword, fullword, or
 doubleword) in which the first specified loca-
 tion (parameter first) is found, _____

 (2) the entire storage unit in which the last
 location (parameter last) is found, and ____

 (3) all intervening storage.

 Thus, the first and last printed items of a storage
 dump may include up to a maximum of seven bytes more
 than actually requested in the parameter list.

 If mnemonics are requested and SDUMP discovers a
 byte that cannot be interpreted as an operation
 code, then instead of a legal mnemonic, the charac-
 ters "****" appear directly below the hexadecimal
 presentation of the halfword in storage that should
 have contained an operation code. When this occurs,
 the mnemonic scanner jumps ahead as though the
 illegal operation code specified an RR-type instruc-
 tion (two bytes) and tries to interpret the byte at
 the new location as an operation code, etc. Any
 mnemonic print line that contains the "****" for at
 least one of its entries is also marked with a
 single "X" directly below the line address that
 prefixes the hexadecimal presentation of that same
 region of storage. (The mnemonic conversion routine
 includes the full IBM 370 Model 168 instruction
 set.) To facilitate the location of particular
 items in the output, line addresses always have a ______
 zero in the least significant hexadecimal position. ____
 Column headers are provided which give the value of
 the least significant hexadecimal digit of the
 address of the first byte in each print item.

 A line of dots is printed to indicate that a region
 of storage contains identical items. The storage
 unit used for comparisons is halfword, fullword, or
 doubleword depending upon the type(s) of conversion
 specified. In all cases, the storage unit corre-
 sponding to the last item printed before the line of
 dots, the storage unit for the first item after the
 line, and all intervening storage units have identi-
 cal contents. The last line is always printed (even

 SDUMP 427

 MTS 3: System Subroutine Descriptions

 April 1981

 if all of its entries exactly match the previously
 printed line).

 Example: Assembly: EXTRN SPRINT
 CALL SDUMP,(SW,SPRINT,WK,FIRST,FIRST+3)
 .
 .
 WK DS 50D
 SW DC F’0’
 FIRST DC X’F1F2F3F4’

 FORTRAN: REAL*8 WK(50)
 LOGICAL*1 FIRST(4)
 EXTERNAL SPRINT
 ...
 CALL SDUMP(0,SPRINT,WK,FIRST(1),FIRST(3),&4)

 The above example, coded in assembly language and FORTRAN,
 will cause SDUMP to print the contents of the location
 FIRST.

 428 SDUMP

 MTS 3: System Subroutine Descriptions

 April 1981

 SERCOM ______

 Subroutine Description

 Purpose: To write an output record on the logical I/O unit SERCOM.

 Location: Resident System

 Alt. Entry: SERCOM#

 Calling Sequences:

 Assembly: CALL SERCOM,(reg,len,mod,lnum)

 FORTRAN: CALL SERCOM(reg,len,mod,lnum,&rc4,...)

 Parameters:

 reg is the location of the virtual memory region ___
 from which data is to be transmitted.
 len is the location of a halfword (INTEGER*2) inte- ___
 ger giving the number of bytes to be _____
 transmitted.
 mod is the location of a fullword of modifier bits ___
 used to control the action of the subroutine.
 If mod is zero, no modifier bits are specified. ___
 See the "I/O Modifiers" description in this
 volume.
 lnum (optional) is the location of a fullword integer ____
 giving the internal representation of the line
 number that is to be written or has been written
 by the subroutine. The internal form of the
 line number is the external form times 1000,
 e.g., the internal form of line 1 is 1000, and
 the internal form of line .001 is 1.
 rc4,... is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 Return Codes:

 0 Successful return.
 4 Output device is full.
 >4 See the "I/O Subroutine Return Codes" description
 in this volume.

 Description: The subroutine writes a record of length len (in bytes) ___
 from the region specified by reg on the logical I/O unit ___
 SERCOM. The parameter lnum is needed only if the mod ____ ___
 parameter or the FDname specifies either INDEXED or PEEL

 SERCOM 429

 MTS 3: System Subroutine Descriptions

 April 1981

 (RETURNLINE#). If INDEXED is specified, the line number
 to be written is specified in lnum. If PEEL is specified, ____
 the line number of the record written is returned in lnum. ____

 If len is zero when writing to a line file , the line is ___
 deleted from the file.

 The default FDname for SERCOM is *MSINK*.

 There is a macro SERCOM in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for SERCOM in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Examples: The example below, given in assembly language and FORTRAN,
 calls SERCOM specifying an output region of 80 bytes.
 There is no modifier specification made in the subroutine
 call.

 Assembly: CALL SERCOM,(REG,LEN,MOD)
 .
 .
 REG DS CL80
 MOD DC F’0’
 LEN DC H’80’

 or

 SERCOM REG Subr. call using macro

 FORTRAN: INTEGER REG(20),LEN*2/80/
 ...
 CALL SERCOM(REG,LEN,0)

 430 SERCOM

 MTS 3: System Subroutine Descriptions

 April 1981

 SETFSAVE ________

 Subroutine Description

 Purpose: To enable or disable the saving of files by the system
 file-save utility. (Unless otherwise directed, all user
 files are saved so that there will be backup copies of
 files in case of inadvertent destruction or damage due to
 hardware failure.)

 Location: Resident System

 Alt. Entry: SETFS

 Calling Sequence:

 Assembly: CALL SETFSAVE,(what,onoff,info,errcode,
 errmsg),VL

 FORTRAN: CALL SETFS(what,onoff,info,errcode,errmsg,&rc4)

 Parameters:

 what is the location of either ____
 (1) a file name with a trailing blank (if
 info=0), ____
 (2) a fullword-integer FDUB pointer (such as
 returned by GETFD) (if info=1), ____
 (3) a fullword-integer logical I/O unit num-
 ber (0 through 99) (if info=1), or ____
 (4) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS) (if info=1). ____
 onoff is the location of a fullword-integer 0 or 1. _____
 If 1, the file is not to be saved by the ___
 system file-save program.
 info is the location of a fullword-integer 0 or 1 ____
 which identifies the type of the what ____
 parameter.
 errcode (optional) is the location of a fullword in _______
 which the SETFSAVE subroutine will place the
 error number if an error return (return code
 4) is made. If errcode is omitted, the _______
 errmsg parameter must also be omitted. As- ______
 sembly language users who wish to omit this
 parameter should either follow the variable
 parameter list convention (high-order bit of
 the previous parameter adcon is set to 1) or
 supply an adcon which is zero (rather than
 pointing to a zero).

 SETFSAVE 431

 MTS 3: System Subroutine Descriptions

 April 1981

 Error numbers less than 100 indicate an error
 in the mechanics of the subroutine call or in
 the values of the parameters:

 Number Message ______ _______

 1 ILLEGAL PARAMETER LIST POINTER
 2 ILLEGAL "WHAT" PARAMETER ADDRESS
 3 ILLEGAL "ONOFF" PARAMETER ADDRESS
 4 "ONOFF" PARAMETER VALUE NOT 0 OR 1
 5 ILLEGAL "INFO" PARAMETER ADDRESS
 11 "INFO" PARAMETER VALUE NOT 0 OR 1

 Error numbers between 100 and 105 indicate
 errors that occur in accessing the file.

 101 ILLEGAL FILE NAME
 102 FILE NOT FOUND - FILE "XXX"
 103 ACCESS NOT ALLOWED TO FILE "XXXX"
 (Permit access is required to set the
 save status.)
 104 DEADLOCK SITUATION, TRY LATER - FILE
 "XXXX"
 105 INTERRUPTED OUT OF WAIT FOR LOCKED
 FILE "XXXX"

 Error numbers 201 and above indicate a system
 error.

 errmsg (optional) is the location of a 20-fullword ______
 (80-character) region in which the SETFSAVE
 subroutine will place the corresponding error
 message if an error occurs. Assembly lan-
 guage users should see instructions above on
 omitting optional parameters for the errcode _______
 parameter.
 rc4 is the statement label to transfer to if the ___
 corresponding return code occurs.

 Return Codes:

 0 The save status has been set as requested.
 4 Error return. The save status has not been
 changed, but the errcode and errmsg values have _______ ______
 been set, if specified.

 432 SETFSAVE

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL SETFSAVE,(WHAT,ONOFF,INFO,ERRCOD,
 ERRMSG),VL
 .
 .
 WHAT DC C’TOPSECRET ’
 ONOFF DC F’1’
 INFO DC F’0’
 ERRCOD DS F
 ERRMSG DS CL80

 FORTRAN: CALL SETFS(’TOPSECRET ’,1,0,ERRCOD,ERRMSG,&100)

 In both examples above, the file TOPSECRET is not to be
 saved by the system file-save program.

 SETFSAVE 433

 MTS 3: System Subroutine Descriptions

 April 1981

 434 SETFSAVE

 MTS 3: System Subroutine Descriptions

 April 1981

 SETIME ______

 Subroutine Description

 Purpose: To set up a timer interrupt to occur after a specified
 time interval (either real time or CPU time for the
 current task).

 Location: Resident System

 Calling Sequences:

 Assembly: CALL SETIME,(code,id,value,aregion)

 Parameters:

 code is the location of a fullword integer which ____
 specifies the meaning of the value parameter. _____
 The valid choices are:

 0 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds
 of task CPU time, relative to the time of
 the call.
 1 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds
 of real time, relative to the time of the
 call.
 2 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds
 of task CPU time, relative to the time at
 signon.
 3 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds
 of real time, relative to the time at
 signon.
 4 value is a 4-byte binary integer which _____
 specifies a time interval in timer units
 (13 1/48 microseconds per unit) of task
 CPU time, relative to time of the call.
 5 value is a 16-byte EBCDIC string giving _____
 the time and date at which the interrupt
 is to occur, in the form HH:MM.SSMM-DD-YY.
 6 value is a 8-byte binary integer which _____
 specifies a time interval in microseconds
 of real time since March 1, 1900 (local
 time).
 7 value is a 8-byte binary integer which _____
 specifies a time interval in microseconds
 of real time since January 1, 1900 (GMT).

 SETIME 435

 MTS 3: System Subroutine Descriptions

 April 1981

 id is the location of a fullword identifier __
 which will be passed to the exit routine when
 the interrupt occurs and the exit is taken.
 id should be nonzero. __
 value is the location of a 4-, 8-, or 16-byte _____
 fullword-aligned region which specifies the
 time at which the interrupt is to occur, as
 determined by the code parameter. ____
 aregion is the location of the address of the 76-byte _______
 exit region to be used when the interrupt
 occurs and the exit is taken. This is the
 same exit region address used in the call on
 TIMNTRP which enables the exit for this
 interrupt.

 Return Codes:

 0 Successful return.
 4 Invalid code or aregion parameter. ____ _______
 8 Too many interrupts set up.

 Description: Each call on the SETIME subroutine sets up a new timer
 interrupt to occur at the time specified by the code and ____
 value parameters. When the interrupt occurs, an exit will _____
 be taken using the exit region specified by the aregion _______
 parameter, if that exit is enabled. Exits are enabled or
 disabled by the TIMNTRP subroutine, and all exits are
 disabled until enabled by TIMNTRP subroutine. The combi-
 nation of the identifier specified by id and the exit __
 region is forced to be unique, since the SETIME subroutine
 will cancel any previously set up interrupt with the same
 identifier and exit region address.

 A maximum of 100 interrupts is allowed. This restriction
 is for error-checking purposes only.

 For further details, see also the GETIME, RSTIME, and
 TIMNTRP subroutine descriptions.

 FORTRAN users should consult the TICALL subroutine de-
 scription in this volume for details on using timer
 interrupts with FORTRAN.

 Example: Assembly: CALL SETIME,(ZERO,ONE,TENSEC,AREG)
 LM 0,1,=A(EXIT,REG)
 CALL TIMNTRP
 .
 CALL SETIME,(ONE,TWO,FIVMIN,AREG)
 LM 0,1,=A(EXIT,REG)
 CALL TIMNTRP
 .
 CALL SETIME,(FIVE,THREE,TWO30,AREG)
 LM 0,1,=A(EXIT,REG)

 436 SETIME

 MTS 3: System Subroutine Descriptions

 April 1981

 CALL TIMNTRP
 .
 .
 ZERO DC F’0’
 ONE DC F’1’
 TWO DC F’2’
 THREE DC F’3’
 FIVE DC F’5’
 TENSEC DC FL8’10000000’
 FIVMIN DC FL8’300000000’
 TWO30 DC C’02:30.00’,C’04-12-72’
 AREG DC A(REG)
 REG DS 19F

 This example sets up three timer interrupts. The first
 interrupt is a task CPU time interrupt 10 seconds after
 the call; the second is a real-time interrupt 5 minutes
 after the call; the third is a real-time interrupt at 2:30
 a.m. on April 12, 1972. All the interrupts are enabled
 by calls to TIMNTRP and will cause the subroutine EXIT to
 be invoked after the designated intervals have passed.

 SETIME 437

 MTS 3: System Subroutine Descriptions

 April 1981

 438 SETIME

 MTS 3: System Subroutine Descriptions

 April 1981

 SETIOERR ________

 Subroutine Description

 Purpose: To allow users to regain control when I/O transmission
 errors that would otherwise be fatal (such as tape I/O
 errors or exceeding the size of a file) occur during
 execution.

 This subroutine is obsolete. The @ERRRTN I/O modifier
 should be used instead.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL SETIOERR,(loc)

 Parameters:

 loc is either: ___
 (a) the location of a subroutine to transfer to
 when an I/O error occurs, or
 (b) zero, in which case the error exit is reset.

 Description: A call on the subroutine SETIOERR sets up an I/O transmis-
 sion error exit for one error only. When an error occurs
 and the exit is taken, the intercept is cleared so that
 another call to SETIOERR is necessary to intercept the
 next I/O transmission error.

 When the error routine is called, registers 0 and 1 both
 contain what was in GR13 upon entry to the I/O routine,
 i.e., the location of the save area in which the I/O
 routine saved registers at the time of the call. This can
 be used to obtain the parameter list for the call on the
 I/O subroutine.

 If the error routine returns (BR 14), a return is made to
 the user’s program from the I/O routine with the return
 code indicating the type of error that occurred. The
 return code depends upon the type of device in use when
 the error occurred. See the section "I/O Subroutine
 Return Codes" in this volume. This is the same behavior
 as if the @ERRRTN I/O modifier had been set for the I/O
 call. If the @ERRRTN modifier is used on an I/O call, the
 SETIOERR exit is never taken.

 Note: SETIOERR is for assembly language users and SIOERR
 is for FORTRAN users. See the SIOERR subroutine

 SETIOERR 439

 MTS 3: System Subroutine Descriptions

 April 1981

 description in this volume. There is a difference
 in the level of indirection between the two
 subroutines; therefore, SIOERR should not be used
 by assembly language users.

 Example: Assembly: CALL SETIOERR,(SUBR)
 SCARDS DATAREG,LEN,EXIT=(EOF,IOERR)
 .
 .
 SUBR ENTER 12
 SPRINT ’TAPE READ ERROR’
 EXIT 0

 The call to SETIOERR enables the error exit. If on a
 succeeding I/O operation, a transmission occurs, SETIOERR
 will call SUBR, thus allowing the user to take his own
 error exit.

 440 SETIOERR

 MTS 3: System Subroutine Descriptions

 April 1981

 SETKEY ______

 Subroutine Description

 Purpose: To set the program key associated with a file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL SETKEY,(what,pkey,info,ercode,errmsg),VL

 FORTRAN: CALL SETKEY(what,pkey,info,ercode,errmsg,&rc4)

 Parameters:

 what is the location of either: ____
 (a) a file name with trailing blank (if
 info=0), ____
 (b) a fullword-integer FDUB-pointer (such as
 returned by GETFD) (if info=1), ____
 (c) a fullword-integer logical I/O unit num-
 ber (0 through 99) (if info=1), or ____
 (d) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS) (if info=1).
 pkey is the location of the program key to be ____
 associated with the file. One trailing blank
 is required.
 info is the location of a fullword integer which ____
 specifies the kind of what parameter ____
 supplied.
 ercode (optional) is the location of a fullword in ______
 which the SETKEY subroutine will place an
 error number if an error return (return code
 4) is made. If this parameter is omitted,
 then the errmsg parameter must also be ______
 omitted.

 Assembly language users who wish to omit this
 parameter should either follow the variable
 parameter list convention (high-order bit of
 the previous parameter’s adcon in the parame-
 ter list should be 1) or else supply an adcon
 which is zero (rather than pointing to a
 zero).

 Error numbers less than 100 indicate some-
 thing was wrong with either the mechanics of
 the subroutine call or the values of the
 parameters:

 SETKEY 441

 MTS 3: System Subroutine Descriptions

 April 1981

 Number Message ______ _______

 1 Illegal parameter list pointer
 2 Illegal "what" parameter address
 3 Illegal "pkey" parameter address
 4 Illegal program key
 5 Illegal "info" parameter address
 6 "Info" parameter value not 0 to 1

 Error numbers between 100 and 105 describe
 errors that occur in accessing the file.

 101 Illegal file name
 102 File not found - file "xxxx"
 103 Access not allowed to file "xxxx"
 (Permit access required to set
 the program key).
 104 Deadlock situation, try later - file
 "xxxx"
 105 Interrupted out of wait for locked
 file "xxxx"

 Error numbers 201 and above indicate a file
 system error.

 If a wait to lock is interrupted by an
 attention interrupt, control passes to MTS
 unless the user program has established an
 attention interrupt exit (by calling the
 ATTNTRP subroutine). Following a $RESTART
 command or a return to the point of interrup-
 tion from the attention exit, a return is
 made from SETKEY with an error code of 105.

 errmsg (optional) is the location of a 20-fullword ______
 (80-character) region in which the SETKEY
 subroutine will place the corresponding error
 message if an error return (return code 4) is
 made. Assembly language users should see
 instructions above on omitting optional par-
 ameters for the ercode parameter. ______
 rc4 is the statement label to transfer to if the ___
 corresponding return code occurs.

 Return Codes:

 0 The program key has been set as requested.
 4 Error. The program key has not been set. See the
 ercode and errmsg values returned for the specific ______ ______
 error.

 442 SETKEY

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL SETKEY,(WHAT,PKEY,INFO,ERCODE,ERRMSG)
 .
 .
 WHAT DC C’PROGRAM ’
 PKEY DC C’DBMS ’
 INFO DC F’0’
 ERCODE DS F
 ERRMSG DS CL80

 FORTRAN: CALL SETKEY(’PROGRAM ’,’DBMS ’,0)

 The above examples set the program key for file PROGRAM to
 DBMS.

 SETKEY 443

 MTS 3: System Subroutine Descriptions

 April 1981

 444 SETKEY

 MTS 3: System Subroutine Descriptions

 April 1981

 SETLCL ______

 Subroutine Description

 Purpose: To set a local time limit for the executing program.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL SETLCL,(value)

 FORTRAN: CALL SETLCL(value)

 x=SETLCL(0)

 Parameter:

 value is the location of a fullword-integer _____
 (INTEGER*4) value (in timer units) giving the
 local time limit to be established. If the
 value is zero, the current local time limit
 is canceled. One timer unit is 13 1/48
 microseconds or 1/(256*300) seconds.

 Value Returned:

 GR0 contains the value of the local time limit
 (in timer units). If the time limit was
 canceled (value=0), GR0 contains the amount _____
 of time remaining before the time limit would
 have expired. For FORTRAN programs, this
 value is returned as a function value in x. _

 Return Codes:

 0 Successful return.
 4 LSS is in effect and call to SETLCL attempted to
 set too large a local time limit.

 Description: The SETLCL subroutine allows a program to establish,
 cancel, or change the local time limit. The local time
 limit set takes effect immediately and applies to the
 remaining execution time of the program.

 SETLCL 445

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: Assembly: CALL SETLCL,(LIMIT)
 .
 .
 CALL SETLCL,(ZERO)
 .
 .
 LIMIT DC AL4(10*256*300)
 ZERO DC F’0’

 The above example initially sets up a local time limit of
 10 seconds and then subsequently cancels the time limit on
 the second call to SETLCL.

 FORTRAN: CALL SETLCL(10*256*300,&4)

 The above example sets a local time limit of 10 seconds.

 446 SETLCL

 MTS 3: System Subroutine Descriptions

 April 1981

 SETLIO ______

 Subroutine Description

 Purpose: To assign a file or device to a logical I/O unit.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL SETLIO,(unit,FDname)

 FORTRAN: CALL SETLIO(unit,FDname,&rc4)

 Parameters:

 unit is the location of the left-justified, ____
 8-character logical I/O unit name (e.g.,
 SCARDS), or a fullword logical I/O unit
 number (0-99).
 FDname is the location of the file or device name to ______
 be assigned. This name must be terminated
 with a trailing blank.
 rc4 is the statement label to transfer to if the ___
 return code of 4 occurs.

 Return Codes:

 0 Successful return.
 4 Error return. An illegal logical I/O unit name or
 number was specified.

 Description: This subroutine is used to assign a file or device to a
 logical I/O unit. If there was a previous assignment, the
 new file or device replaces the previous file or device.
 That usage of the previous file or device is released. If
 the FDname parameter is blank, the previous file or device ______
 is released and the logical I/O unit is left without an
 assignment.

 This subroutine does not check for the legality of the
 file or device name specified.

 SETLIO 447

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL SETLIO,(UNIT,FDNAME)
 LTR 15,15
 BNE ERROR
 .
 .
 UNIT DC CL8’SCARDS ’
 FDNAME DC C’DATAFILE ’

 FORTRAN: CALL SETLIO(’SCARDS ’,’DATAFILE ’,&100)

 The above two examples call SETLIO to assign the file
 DATAFILE to the logical I/O unit SCARDS.

 Assembly: LA 10,INPUT Get addr of input line
 LR 9,10 Save addr of input line
 LOOP1 CLI 0(10),C’=’ Scan off unit name
 BE EXIT1
 CLI 0(10),C’ ’ Error if no equal sign
 BE ERROR
 LA 10,1(0,10)
 B LOOP1
 EXIT1 LR 8,10 Compute len of unit name
 SR 8,9
 BCTR 8,0
 MVC UNIT(8),=CL8’ ’
 EX 8,MVCLIO Save unit name
 LA 10,1(0,10) Skip past equal sign
 CALL SETLIO,(UNIT,(10))
 LTR 15,15
 BNE ERROR
 .
 .
 INPUT DC C’SCARDS=DATAFILE ’
 UNIT DS CL8
 MVCLIO MVC UNIT(0),0(9)

 The above example calls SETLIO after scanning an input
 string containing a logical I/O unit assignment. GR10
 which points to the name of the file DATAFILE is inserted
 into the parameter list for SETLIO in place of FDname. ______

 448 SETLIO

 MTS 3: System Subroutine Descriptions

 April 1981

 SETLNR ______

 Subroutine Description

 Purpose: To set all or a subset of the line numbers in a line file. ____

 Location: Resident System

 Calling Sequences:

 Assembly: CALL SETLNR,(unit,first,last,cnt,buffer)

 FORTRAN: CALL SETLNR(unit,first,last,cnt,buffer,&rc4,
 &rc8,&rc16,&rc20,&rc24,&rc28,&rc32)

 Parameters:

 unit is the location of either: ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 first is the location of a fullword containing the _____
 internal line number of the first line number ________
 to be set.
 last is the location of a fullword containing the ____
 internal line number of the last line number ________
 to be set.
 cnt is the location of a fullword containing a ___
 count of the number of line numbers in the
 specified range to be set (used for error
 checking).
 buffer is the location of a buffer. The buffer is ______
 supplied and set up by the caller. The
 buffer should be of the form:

 bytes 0-3 pointer to next buffer or zero,
 bytes 4-7 length of this buffer in bytes
 (including these 8 bytes),
 bytes 8-... internal line numbers to set (4
 bytes each).

 Return Codes:

 0 The line numbers were set successfully.
 4 The file does not exist or unit is invalid. ____
 8 Hardware error or software inconsistency
 encountered.

 SETLNR 449

 MTS 3: System Subroutine Descriptions

 April 1981

 12 Renumber or read/write access not allowed.
 16 Locking the file for modification will result in a
 deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent use
 of the shared file).
 24 Parameters not addressable or inconsistent parame-
 ters specified (requested setting will cause du-
 plicate or decreasing line numbers, etc.).
 28 The file is not a line file.
 32 Buffers exhausted before line-number range was
 exhausted.

 Notes: If first and last do not correspond to actual line _____ ____
 numbers in the file, the next and previous line
 numbers, respectively, will be used.

 In MTS, the internal line number (e.g., 2100) is
 equal to the external line number (e.g., 2.1)
 times one thousand.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of
 interruption from the attention exit, a return is
 made from SETLNR with a return code of 20.

 Examples: Assembly: CALL GETFST,(UNIT,FSTLNR)
 CALL GETLST,(UNIT,LSTLNR)
 CALL RETLNR,(UNIT,FSTLNR,LSTLNR,CNT,BUFFER)
 CALL RENUMBER,(UNIT,FSTLNR,LSTLNR,BEG,INC)
 ...
 CALL GETFST,(UNIT,FSTLNR)
 CALL GETLST,(UNIT,LSTLNR)
 CALL SETLNR,(UNIT,FSTLNR,LSTLNR,CNT,BUFFER)
 ...
 UNIT DC F’4’
 FSTLNR DS F First line number
 LSTLNR DS F Last line number
 CNT DS F Count of lines in file
 BEG DC F’1000’ Renumber starting at 1
 INC DC F’1000’ In increments if 1
 BUFFER DC F’0’ The only buffer
 DC F’808’ This many bytes
 DS 200F Line numbers go here

 The above example illustrates how to save a set of line
 numbers in a file, renumber the file, and then later
 restore the original line numbers of the file attached to
 logical I/O unit 4 (assuming the file contains fewer than
 200 lines).

 450 SETLNR

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: INTEGER*4 UNIT,FSTLNR,LSTLNR,CNT,LNR,$I4(1)
 COMMON /$/ $I4
 DATA UNIT/4/
 ...
 CALL GETFST(UNIT,FSTLNR)
 CALL GETLST(UNIT,LSTLNR)
 CALL CNTLNR(UNIT,FSTLNR,LSTLNR,CNT)
 CALL ARINIT(1,1)
 CALL ARRAY(LNR,4,CNT+2)
 $I4(LNR+1)=0
 $I4(LNR+2)=CNT*4+8
 CALL RETLNR(UNIT,FSTLNR,LSTLNR,CNT,$I4(LNR+1))
 ...
 CALL RENUMB(UNIT,FSTLNR,LSTLNR,1000,1000)
 ...
 CALL GETFST(UNIT,FSTLNR)
 CALL GETLST(UNIT,LSTLNR)
 CALL SETLNR(UNIT,FSTLNR,LSTLNR,CNT,$I4(LNR+1))
 ...

 The above example illustrates how to remember and reset
 all of the line numbers of a line file attached to logical
 I/O unit 4 (using the FORTRAN array management subroutines
 to dynamically allocate a buffer).

 SETLNR 451

 MTS 3: System Subroutine Descriptions

 April 1981

 452 SETLNR

 MTS 3: System Subroutine Descriptions

 April 1981

 SETPFX ______

 Subroutine Description

 Purpose: To set the input/output prefix character for the program
 currently executing. This character is issued during
 program execution as the first character of every input or
 output line on a terminal. This subroutine may only be
 used to set and return single-character prefixes. Longer
 prefixes may be set and returned using the PFXSTR item of
 the GUINFO and CUINFO subroutines.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL SETPFX,(char)

 FORTRAN: INTEGER*4 SETPFX,i
 i = SETPFX(char)

 Parameter:

 char is the location of the prefix character. ____

 Return Codes:

 0 Successful return.
 4 Successful return, but only the first character of
 a multiple-character prefix is returned in GR0.

 Values Returned:

 GR0 contains the previous prefix character, right-
 justified with leading hexadecimal zeros. For FOR-
 TRAN users, the value returned by the integer func-
 tion call to SETPFX will be the previous prefix
 character, right-justified. If the previous prefix
 contains more than one character, only the first
 character is returned. Because of this restriction,
 the use of the GUINFO and CUINFO subroutines to save
 and restore prefixes is recommended.

 SETPFX 453

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL SETPFX,(PCHAR)
 STC 0,OCHAR
 .
 .
 PCHAR DC C’?’
 OCHAR DS C

 The above example calls SETPFX to set the prefix character
 to "?".

 FORTRAN: INTEGER*4 SETPFX, OLD
 OLD = SETPFX(’/’)

 The above example calls SETPFX to set the prefix character
 to "/".

 454 SETPFX

 MTS 3: System Subroutine Descriptions

 April 1981

 SIOC ____

 Subroutine Description

 Purpose: To perform floating-point, integer, logical, and hexadeci-
 mal input/output conversions. The types of conversion and
 editing available correspond to those associated with the
 ANS FORTRAN conversion codes D, E, F, G, I, and L and the
 IBM FORTRAN conversion code Z. In addition, SIOC incorpo-
 rates a number of optional features such as blank suppres-
 sion and free-format input and output. SIOC performs one
 I/O conversion per call and does not perform any actual
 I/O operations.

 Location: Resident System

 Alt. Entry: SIOC#

 Calling Sequences:

 Assembly: CALL SIOC,(buffer,cvarea)

 FORTRAN: CALL SIOC(buffer,cvarea,&rc4,&rc8)

 Parameters:

 buffer is the location of the first character of the ______
 input/output buffer. Input conversions never
 change the contents of the buffer.
 cvarea is the location of a doubleword-aligned block ______
 of information containing parameters indicat-
 ing the type of conversion and editing,
 containing the internal datum, and providing
 a scratch area for intermediate calculations.
 rc4,rc8 (optional) are statement labels to transfer _______
 to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
 4 The parameters of the external output field are
 inappropriate and the field has been filled with
 asterisks (*). The external input field contains
 an illegal character.
 8 One of the input/output parameters specifies an
 illegal value, or the value of the external input
 field exceeds the allowable range for the internal
 representation.

 SIOC 455

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The notation for the cvarea parameters used below is ______
 consistent with the FORTRAN format descriptors sPEw.d,
 sPFw.d, sPGw.d, Iw, Lw, and Zw. For FORTRAN users, the
 doubleword alignment of cvarea may be most easily accom- ______
 plished by placing the parameters at the beginning of a
 COMMON block.

 RFP: This fullword integer specifies the position rela-
 tive to buffer of the external field in the input/ ______
 output buffer. The first character of buffer corre- ______
 sponds to an RFP of zero. For both input and output
 conversions, the RFP is updated to correspond to the
 first character after the external field processed.
 Restriction: RFP ≥ 0.
 W: This fullword integer specifies the number of char-
 acters in the external field. Restriction: 255 ≥ W
 ≥ 1.
 D: Nominally, at least, this fullword integer specifies
 the number of digits to the right of the decimal
 point. The interpretation of and restrictions on
 this parameter are dependent on the conversion code.
 S: Fullword-integer scale factor. The interpretation
 of and restrictions on this parameter are dependent
 on the conversion code.
 RF: Fullword-integer replication factor.
 CW: This fullword consists of the function byte, the
 conversion code byte, the datum-length byte, and the
 input picture byte. The values for these bytes
 listed below are in hexadecimal.

 Function Byte: 1=INPUT, 0=OUTPUT.
 Conversion Code Byte: E=0E, F=1C, G=1E, I=10, L=06,
 Z=02.
 Datum-Length Byte: Number of bytes in the internal
 datum. Restriction: 8 ≥ datum-length (E,F,G,I,
 L), or 8 ≥ datum-length ≥ 1 (Z).
 Input Picture Byte: The bits of this byte are set
 during input conversions to record the actual
 contents of the external field, e.g., sign char-
 acter, decimal exponent.

 V: The internal representation of the datum will or
 should be left-justified in this doubleword.
 WK: This area must supply at least 10 words of scratch
 space for output conversions, and max(10,W/4+3)
 words for input conversions.

 Input conversions will change only the RFP, RF, the input
 picture byte, and V; output conversions will change only
 the RFP and the external field in buffer. ______

 Because the manipulation of the various parameters con-
 tained in cvarea is somewhat inconvenient in FORTRAN, the ______

 456 SIOC

 MTS 3: System Subroutine Descriptions

 April 1981

 SIOCP subroutine has been made available for this purpose.
 The description of the SIOCP subroutine is restricted to
 information indicating how to set the SIOC parameters.

 Relative Field Position - RFP

 The RFP parameter can be employed to relieve the
 calling program of maintaining a buffer pointer. For
 example, when converting successive values from an
 input line, the RFP can be initialized to zero for
 the first call on SIOC and subsequently ignored.
 This same procedure can be used to formulate an
 output line, and the final value of RFP will be the
 length of the line generated.

 Replication Factor Processing

 In the external field, a replication factor consists
 of a string of decimal digits terminated by an
 asterisk (*) and preceding the value in the field,
 e.g., 5*1.5. An input replication factor will be
 converted and stored in RF only if (1) bit 1 of the
 conversion code byte is 1 (hex 40), (2) the portion
 of the field preceding and following the asterisk is
 not null, and (3) the value of the digit string
 preceding the asterisk is in the range [1,
 2147483647]. An output replication factor will be
 generated in the external field only if (1) bit 1 of
 the conversion code byte is 1 (hex 40), (2) free-
 format output is in effect, and (3) the value in RF
 is positive.

 Blanks in Numeric Input Fields

 Consistent with the ANS FORTRAN standard, all blanks
 in the external input field are treated as zeros. If
 bit 3 of the function byte is 1 (hex 10), all blanks
 in the external field are ignored.

 Floating-Point Mapping

 All E, F, and G input conversions correctly round the
 value in the external field to the appropriate
 internal format; and all E, F, and G output conver-
 sions place in the external field the decimal expan-
 sion of the internal datum rounded to the number of
 digits (≤18) necessary to fulfill the field require-
 ments. If bit 4 of the function byte is 1 (hex 08),
 both the input and output mappings are by truncation
 instead of rounding.

 SIOC 457

 MTS 3: System Subroutine Descriptions

 April 1981

 Direct Conversion

 The direct conversion feature is only applicable to
 output conversions, and is obtained by setting bit 5
 of the function byte to 1 and bit 6 to 0 (hex 04).
 Buffer and the parameters RFP, W, S, and RF are ______
 ignored, and the external field is generated in the
 scratch area WK. The format of the external field
 depends on the conversion code, the datum-length, and
 D, i.e., E(D+6).D, I12, L1, or Z(2*datum-length). If
 D is not in the range [1,18], a default value of 9 or
 18 is employed depending on whether the internal
 datum is a short- or long-operand, respectively. D
 is not actually changed.

 Free-Format

 The free-format feature is enabled when bit 6 of the
 function byte is 1 (hex 02). For input conversions,
 this forces the delimiter scan and appropriate updat-
 ing of the RFP after an illegal character has been
 encountered; the RFP is normally updated by W in this
 situation. On the other hand, free-format output
 conversions provide for a datum-dependent, left-
 justified external field with an optional replication
 factor and delimiter (,). The parameters W and S are
 always ignored. Floating-point conversions generate
 D significant digits and append an exponent only when
 necessary. If D is not in the range [1,18], a
 default value of 9 or 18 is employed depending on
 whether the internal datum is a short- or long-
 operand, respectively. D is not actually changed.

 Conversion Code Byte

 In addition to the settings given earlier, three
 other bits in this byte may be used to obtain
 additional services. If bit 1 is 1 (hex 40),
 replication factor processing is enabled. If bit 2
 is 1 (hex 20), a sign will always be generated in E,
 F, G, and I external output fields; a sign is
 normally generated only when the datum is negative.
 If bit 7 is 1 (hex 01), delimiter processing is
 enabled. For free-format output conversions, delimi-
 ter processing places a comma (,) at the end of the
 external field. For input conversions, the first
 occurrence of a delimiter character results in: (1)
 setting the RFP to correspond to the first character
 after the delimiter, (2) effectively modifying W to
 correspond to the number of characters preceding the
 delimiter, and (3) effectively setting D to zero.
 The W and D parameters are not actually changed. If
 the first character of the external field is a

 458 SIOC

 MTS 3: System Subroutine Descriptions

 April 1981

 delimiter, the value of the field is zero. The
 delimiter characters are: comma (,), semicolon (;),
 prime (’), and slash (/).

 Datum-Length Byte

 In conjunction with the conversion code byte, the
 value of this parameter determines the internal
 representation as follows:

 Conv. Code Datum-Length Internal Representation _____ ____ ____________ ________ ______________

 E,F,G =8 REAL*8
 E,F,G NOT 8 REAL*4
 I =4 INTEGER*4
 I NOT 4 INTEGER*2
 L =4 LOGICAL*4
 L NOT 4 LOGICAL*1
 Z ≤8 datum-length bytes

 Input Picture Byte

 The bits of this byte are set during input conver-
 sions to describe the actual contents of the external
 field. These bits indicate the presence (1) or
 absence (0) of the elements listed below:

 Bit Element and Applicable Conversion Codes ___ _______ ___ __________ __________ _____

 0 Floating-point exponent character D (E,F,G).
 1 Replication factor (all).
 2 Sign character (E,F,G,I,Z).
 3 Digits to left of decimal point (E,F,G,I).
 4 Decimal point (E,F,G).
 5 Digits to right of decimal point (E,F,G).
 T or F (L).
 6 Floating-point exponent (E,F,G).
 T or F (L).
 Hexadecimal digits (Z).
 7 Delimiter (all).

 Error Processing

 If an illegal character is found in the external
 input field, a return code of 4 is given. The
 relative position of the illegal character with
 respect to the first character of the external field
 is placed in the first word of V, and the translation
 of the illegal character is placed in the second word
 of V.

 SIOC 459

 MTS 3: System Subroutine Descriptions

 April 1981

 Illegal Character Translation _______ _________ ___________

 Decimal digit (0-9) 0
 Sign character 1
 Delimiter (,;’/) 2
 Decimal point 3
 Asterisk (*) 3
 Hex digit (A-F) 4
 None of the above 5

 Syntax violations are treated as illegal characters.
 For example, a decimal point is legal in an F-field,
 but the second occurrence of a decimal point would be
 illegal.

 When performing output conversions, a return code of
 4 is given if the field width is insufficient, if S
 is not in the range [-D,D+1] in a G-field specifica-
 tion being treated as an E-field specification, if S
 is not in the range [-D,D+1] in an E-field specifica-
 tion, or if D is not in the range [0,W-1]. The first
 and second conditions are generally data dependent
 but can, like the remaining conditions, be of a
 technical nature.

 Illegal parameter values, which cause a return code
 of 8 with no changes in any SIOC parameters, arise __
 when one or more of the explicit restrictions given
 in the parameter descriptions above are violated. If
 a return code of 8 is given for exceeding the range
 appropriate for the internal representation, the RFP
 will be correctly updated and RF and V will be
 indeterminate.

 Replication Factor Range [1,2147483647]
 Integer Range [-2147483648,2147483647]
 Floating-Point Range [.539...E-78,.723...E+76]

 Example: The example program below prints the elements of a COMPLEX
 vector on unit 5. The output lines produced by this
 program will be of the form

 " ±d.ddddddddE±ee +I* ±d.ddddddddE±ee"

 where, depending on the type of device attached to 5, the
 initial blank may be removed for use as carriage control.-

 460 SIOC

 MTS 3: System Subroutine Descriptions

 April 1981

 COMPLEX Z(10)
 INTEGER BUF(10),BL/’ ’/,BI/’ +I*’/
 INTEGER CVA(18)/0,16,8,1,0,Z002E0400,12*0/
 INTEGER*2 LEN/40/
 EQUIVALENCE (DATUM,CVA(7))
 REAL*8 DCVA(9)
 EQUIVALENCE (DCVA(1),CVA(1))
 ...
 BUF(1)=BL
 BUF(6)=BI
 DO 10 I=1,10
 CVA(1)=4
 DATUM=REAL(Z(I))
 CALL SIOC(BUF,CVA)
 CVA(1)=24
 DATUM=AIMAG(Z(I))
 CALL SIOC(BUF,CVA)
 10 CALL WRITE (BUF,LEN,0,LINE,5)
 ...

 SIOC 461

 MTS 3: System Subroutine Descriptions

 April 1981

 462 SIOC

 MTS 3: System Subroutine Descriptions

 April 1981

 SIOCP _____

 Subroutine Description

 Purpose: To provide an easy method for setting the conversion
 parameters prior to calling the input/output conversion
 subroutine SIOC. Most of the SIOC parameters are fullword
 integers, but the control word is divided into four bytes
 which cannot be conveniently manipulated by FORTRAN pro-
 grams. This subroutine provides for the translation of a
 single FORTRAN format descriptor and associated SIOC
 modifiers into a form acceptable to SIOC. In the descrip-
 tion below, explicit reference is made to various SIOC
 parameters and features so that familiarity with SIOC
 would be most helpful.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL SIOCP,(format,cvarea)

 FORTRAN: CALL SIOCP(format,cvarea,&rc4)

 Parameters:

 format is the location of the first character of the ______
 extended format descriptor to be translated.
 This character string must be terminated by a
 blank.
 cvarea is the location of a doubleword-aligned block ______
 of storage that will be subsequently used in
 calling SIOC.
 rc4 (optional) is a statement label to transfer ___
 to if a nonzero return code occurs.

 Return Codes:

 0 Successful translation.
 4 An element of the character string in format could ______
 not be deciphered, and the contents of cvarea ______
 reflect only the portion of format preceding the ______
 erroneous element. One of the input/output param-
 eters (RFP, W, or the datum-length byte) contains
 an illegal value, i.e., if cvarea is passed to ______
 SIOC, a return code of 8 will result.

 Description: The scanning of the character string in format is termi- ______
 nated when a blank is encountered or when an element of
 the string cannot be deciphered. Thus, blanks should not

 SIOCP 463

 MTS 3: System Subroutine Descriptions

 April 1981

 be embedded in the character strings described below. The
 character string in format should be of one of the ______
 following forms:

 ([Tn,][sP]Dw.d)
 ([Tn,][sP]Ew.d)
 ([Tn,][sP]Fw.d)
 ([Tn,][sP]Gw.d)
 ([Tn,]Iw)
 ([Tn,]Lw)
 ([Tn,]Zw)

 where the elements enclosed in square brackets ([]) are
 optional; "n", "w", and "d" are unsigned decimal integers;
 and "s" is an optionally signed decimal integer. The
 translation process sets the conversion code byte and
 places "n" in RFP, "w" in W, "d" in D, and "s" in S. The
 parameters in cvarea are initialized to zero prior to the ______
 translation only if the first character of format is a ______
 left parenthesis, and only those elements of the parameter
 area explicitly referenced in the extended format descrip-
 tor are modified.

 The SIOC modifier names and corresponding functions are:

 Name Function (Conversion Code Byte) ____ ________ _______________________

 RF Enable replication factor processing.
 S Enable sign generation in numeric output fields.
 D Enable delimiter processing.

 Name Function (Function Byte) ____ ________ _______________

 BLK Ignore blanks in input fields.
 TRUNC Floating-point mapping by truncation.
 DC Direct conversion.
 FF Free-format.
 INPUT Input conversion.

 Name Function (Datum-Length Byte) ____ ________ ___________________

 DL=b Set datum-length byte, 0 ≤ b ≤ 8.

 These modifier names (preceded by an @) should be appended
 to the FORTRAN format descriptor. The occurrence of a
 conversion code (D,E,F,G,I,L,Z) automatically sets the RF,
 S, and D bits of the conversion code byte to zero, i.e.,
 off. The defaults for the function byte and datum-length
 byte modifiers depend on the contents of cvarea when SIOCP ______
 is called (first character of format not a left parenthe- ______
 sis) or are zero, i.e., rounded output in fixed format
 (first character of format a left parenthesis). The ______
 negatives of these modifiers are not supported. ___

 464 SIOCP

 MTS 3: System Subroutine Descriptions

 April 1981

 The translation of the extended format descriptors is
 extremely permissive, and variations on the syntax
 delineated above should be used with caution. For exam-
 ple, using the notation = for equivalence,

 Ew=Ew.=Ew.0, G.d=G0.d, and F=F0.0.

 After the extended format descriptor has been processed,
 SIOCP checks to insure that RFP, W, and the datum-length
 byte contain valid data, i.e., data which will not cause
 SIOC to give a return code of 8.

 Example: The example program below converts two REAL*8 values from
 each input line read through SCARDS, and prints their sum
 on SPRINT in the form

 "(number)±(unsigned-number) = (number)."

 This example illustrates a number of features of both
 SIOCP and SIOC.

 REAL*8 X,Y,SUM,CVA(36),BUFFER(32),BL/’ ’/
 INTEGER*2 LEN
 INTEGER W(2)
 EQUIVALENCE (CVA(1),W(1))
 10 CALL SCARDS(BUFFER,LEN,0,LINE,&100)
 CALL SIOCP(’(E1)@INPUT@BLK@D@DL=8 ’,CVA,&200)
 W(2)=LEN
 CALL SIOC(BUFFER,CVA,&200,&200)
 X=CVA(4)
 W(2)=LEN-W(1)
 IF (W(2).LE.0) GO TO 200
 CALL SIOC(BUFFER,CVA,&200,&200)
 Y=CVA(4)
 SUM=X+Y
 BUFFER(1)=BL
 CALL SIOCP(’(T1,E)@FF@DL=8 ’,CVA,&200)
 CVA(4)=X
 CALL SIOC(BUFFER,CVA)
 CALL SIOCP(’@S ’,CVA,&200)
 CVA(4)=Y
 CALL SIOC(BUFFER,CVA)
 CALL IMVC(3,BUFFER,W(1),’ = ’,0)
 W(1)=W(1)+3
 CALL SIOCP(’E ’,CVA,&200)
 CVA(4)=SUM
 CALL SIOC(BUFFER,CVA)
 LEN=W(1)
 CALL SPRINT(BUFFER,LEN,0,LINE)
 GO TO 10
 100 CALL SYSTEM
 200 CALL ERROR

 SIOCP 465

 MTS 3: System Subroutine Descriptions

 April 1981

 GO TO 10
 END

 466 SIOCP

 MTS 3: System Subroutine Descriptions

 April 1981

 SIOERR ______

 Subroutine Description

 Purpose: To allow FORTRAN users to regain control when I/O trans-
 mission errors that would otherwise be fatal (such as tape
 I/O errors or exceeding the size of a file) occur during
 execution.

 This subroutine is obsolete. The @ERRRTN I/O modifier,
 the FORTRAN ERR exit feature, or the error recovery
 features of the FTNCMD subroutine should be used instead.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: EXTERNAL subr
 CALL SIOERR(subr)

 Parameters:

 subr is the subroutine to transfer to when an I/O ____
 error occurs, or zero, in which case, the error
 exit is disabled.

 Description: A call on the subroutine SIOERR sets up an I/O transmis-
 sion error exit for one error only. When an error occurs
 and the exit is taken, the intercept is cleared so that
 another call to SIOERR is necessary to intercept the next
 I/O transmission error.

 If the subroutine subr returns, a return is made to the ____
 user’s program from the I/O routine with the return code
 indicating the type of error that occurred. The return
 code depends upon the type of device in use when the error
 occurred. See the section "I/O Subroutine Return Codes"
 in this volume.

 Note: SETIOERR is for assembly language (see the de-
 scription of the subroutine SETIOERR) and SIOERR
 is for FORTRAN users. There is a difference in
 the level of indirection between the two subrou-
 tines; therefore, SIOERR should not be used by
 assembly language users.

 Many I/O error conditions are detected by the
 FORTRAN I/O Library before they actually occur,
 thus allowing the FORTRAN monitor to take correc-
 tive action. In these cases, an error exit

 SIOERR 467

 MTS 3: System Subroutine Descriptions

 April 1981

 enabled by a call to SIOERR will not be taken
 since the FORTRAN monitor will take control before
 the erroneous operation is attempted. For further
 details, see the "FORTRAN I/O Library" section in
 MTS Volume 6, FORTRAN in MTS. ______________

 Example: FORTRAN: EXTERNAL SWITCH
 COMMON ISW
 ...
 ISW=0
 CALL SIOERR(SWITCH)
 WRITE (8,105) FILEOUT
 IF(ISW.EQ.1) GO TO 10
 CALL SIOERR(0)
 ...
 SUBROUTINE SWITCH
 COMMON ISW
 ISW=1
 RETURN
 END

 In this example, SIOERR is called to enable an exit if an
 I/O error occurs during the processing of the WRITE
 statement. If an error does occur, the subroutine SWITCH
 will be called which sets the variable ISW to 1 and
 returns. The calling program tests the value of ISW and
 branches to statement 10 if appropriate. SIOERR is called
 again to disable the exit.

 468 SIOERR

 MTS 3: System Subroutine Descriptions

 April 1981

 SKIP ____

 Subroutine Description

 Purpose: To space a magnetic tape or file either forward or
 backward a specified number of records or files.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL SKIP,(nfiles,nrcds,unit)

 FORTRAN: CALL SKIP(nfiles,nrcds,unit,&rc4,&rc8,&rc12)

 Parameters:

 nfiles is the location of the number of files to ______
 skip (must be zero for files).
 nrcds is the location of the number of records to _____
 skip.
 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 rc4,...,rc12 are statement numbers to transfer to if ____________
 a nonzero return code is encountered.

 Return Codes:

 0 Successful return.
 4 An end-of-file (filemark) was reached during a
 forward space or backspace record operation. The
 unit is left positioned immediately after (on
 forward space) or before (on backspace) the
 filemark.
 8 The load point (beginning of tape) was detected on
 a backspace operation (tape is left at load point)
 or the logical end of a labeled tape was detected
 on a forward space operation (tape is left at the
 end). This return code cannot occur for files.
 12 The unit parameter is illegally specified, the ____
 unit is not a magnetic tape or file, an I/O error
 condition was detected, or nfiles is not zero and ______
 the unit is a file. ____

 SKIP 469

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The tape or file specified by unit will be spaced nfiles ____ ______
 first and then nrcds. If a parameter is negative, the _____
 unit will be spaced backward the appropriate number of
 files; if positive, the spacing will be in the forward
 direction. For files, the nfiles parameter must be zero. ______

 In spacing files, after the operation is complete, the
 tape will be positioned on the opposite side of the
 filemark from which it began. That is, on forward space
 file requests (nfiles > 0), the tape will be forward ______
 spaced past the requested number of filemarks and be left
 positioned immediately after the last one. On backspace
 file requests (nfiles < 0), the tape will be backspaced ______
 past the requested number of filemarks and be left
 positioned immediately before the last filemark or at the
 load point. A separate forward space file request will be
 necessary to position the tape at the beginning of the
 next file.

 If any spacing operation results in a nonzero return code
 from the MTS I/O routines, the SKIP subroutine will return
 before completing all requested file and record skips.
 This can occur if a tape is backspaced to loadpoint
 (return code 8), forward spaced to the logical end of a
 labeled tape (return code 8), or if a backspace record or
 forward space record request passes over a filemark
 (return code 4). In addition, a return code of 12 is
 given for an illegal unit, a unit which is not assigned to ____ ____
 a magnetic tape or file, or an I/O error condition.

 Examples: Assembly: CALL SKIP,(NF,NR,UNIT)
 .
 .
 NF DC F’-1’
 NR DC F’1’
 UNIT DC F’3’

 FORTRAN: CALL SKIP(-1,1,3,&100,&150,&200)
 100 ...

 The above two examples will cause the tape assigned to
 logical I/O unit 3 to be positioned to the beginning of
 the current file by backspacing past one filemark, then
 forward spacing over the filemark (by forward spacing one
 record). If the current file was the first file on the
 tape, the tape would backspace to loadpoint and a return
 code of 8 would be issued by the tape routines, causing
 SKIP to return with the tape positioned at the beginning
 of the tape. In FORTRAN, this would cause statement 150
 in the calling program to be executed. If the current
 file was not the first file on the tape, SKIP would
 perform a forward space record after the backspace file.
 Note that this forward space record will result in a

 470 SKIP

 MTS 3: System Subroutine Descriptions

 April 1981

 return code of 4 from SKIP because the forward space
 record will space over a filemark. This would cause
 statement 100 in the FORTRAN program to be executed.

 Assembly: CALL SKIP,(NF,NR,AFDUB)
 .
 .
 NF DC F’5’
 NR DC F’0’
 AFDUB DS F A FDUB-pointer.

 FORTRAN: CALL SKIP(5,0,AFDUB)

 The above two examples will space the tape specified by
 AFDUB forward 5 files, or until the logical end of a
 labeled tape is reached (return code 8).

 Assembly: CALL SKIP,(NF,NR,UNIT)
 .
 .
 NF DC F’0’
 NR DC F’10’
 UNIT DC C’SCARDS ’

 FORTRAN: CALL SKIP(0,10,’SCARDS ’,&4)
 ...
 4 ...

 The above two examples will space the tape or file
 attached to the logical I/O unit SCARDS forward 10 records
 or until an end-of-file occurs, whichever comes first. To
 find out which occurred, test the return code for 4. In
 FORTRAN if the operation terminated due to an end-of-file,
 statement 4 in the program will be executed. If not,
 processing will continue with the next statement.

 SKIP 471

 MTS 3: System Subroutine Descriptions

 April 1981

 472 SKIP

 MTS 3: System Subroutine Descriptions

 April 1981

 SORT ____

 Subroutine Description

 Purpose: To sort or merge records.

 Location: *LIBRARY

 Alt. Entry: SORT1

 Calling Sequences:

 Assembly: CALL SORT,(cstmt[,{unit|vds|num}]...)

 FORTRAN: CALL SORT(cstmt[,{unit|vds|num}]...[,&err])

 PL/I(F): CALL PLCALL(SORT,n,cstmt
 [,ADDR({unit|vds|num})]...);

 Parameters:

 cstmt is the location of the control statement. _____
 unit (optional) is the location of a FDUB-pointer ____
 (as returned by GETFD), or the location of a
 fullword-integer logical I/O unit number
 (0-99).
 vds (optional) is the location of the virtual ___
 data set to be processed.
 num (optional) is the location of a positive, ___
 nonzero, fullword integer that specifies a
 numeric value in the control statement.
 err (optional) is the statement label to transfer ___
 to if an error (nonzero return code) is
 detected by the subroutine.
 n is the number of arguments (FIXED BINARY(31)) _
 to be passed to the subroutine.

 Return Codes:

 0 Successful return.
 4 An error has occurred and the subroutine has
 issued diagnostics via the logical I/O unit
 SERCOM.

 Description: See the section "The SORT Utility Program" in MTS Volume
 5, System Services. _______________

 SORT 473

 MTS 3: System Subroutine Descriptions

 April 1981

 Summary of the Control Statement ________________________________

 Prototype:

 [COPY|[[SORT|MERGE][=[[type],[aspect],[location],[length],]... _ _ _
 [type][,[aspect][,[location][,[length]]]]]]]
 [DS=delimiter[string]delimiter■]...
 [INPUT[=[[name],[structure],[record length],[block length],]... _
 [name][,[structure][,[record length][,[block length]]]]]]
 [OUTPUT[=[[name],[structure],[record length],[block length],]... _
 [name][,[structure][,[record length][,[block length]]]]]]
 [additional parameter]...
 END■ _

 Collating fields:

 TYPE | CODE | SIGN PRESENT | FIELD LENGTH (BYTES)
 ─────────────────────────┼───────┼──────────────┼───────────────────────
 alignment | AL | no | 1 - 4095 _
 binary | BI | no | 1 - 256 _
 bit | BT | no | 1 - 255 (mask)
 call | CA | - | 1 - 4095
 character | CH | no | 1 - 256 _
 defined sequence | DS(i) | no | 1 - 256 _ ___
 fixed-point | FI | yes | 1 - 260 _
 floating-point | FL | yes | 2 - 16
 length | LE | - | - _
 packed decimal | PD | yes | 1 - 16 _
 sequence | SE | - | -
 signed decimal | SD | yes | 1 - 17 _
 zoned decimal | ZD | yes | 1 - 16 _

 Record structures: CODE | RECORD STRUCTURE
 ───────┼──────────────────────────────────────
 U | undefined length
 F | fixed length
 V | variable length
 VS | variable length; spanned
 FB | fixed length; blocked
 VB | variable length; blocked
 VBS | variable length; blocked; spanned
 FBS | fixed length; blocked; standard

 Additional parameters:

 CHK (exit check facility) __
 DEC (delete comments) __
 DEL=x[,x]... (delete output records)
 LIO (list data set characteristics) _
 {REC|MNR}=x (number of records) _ __
 RES=x (restart)
 SIG (sign off on error) __
 TPS[={x|name,name[,name]...}] (tape-merge sort facility) _

 474 SORT

 MTS 3: System Subroutine Descriptions

 April 1981

 SORT2, SORT3, SORT4 ___________________

 Subroutine Description

 Purpose: To sort arrays.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL SORT2,(cstmt,loc1,loc2,len[,num]...)
 CALL SORT3,(cstmt,loc1,loc2,len,loc3,len3
 [,num]...)
 CALL SORT4,(cstmt,loc4,loc2[,num]...)

 FORTRAN: CALL SORT2(cstmt,loc1,loc2,len[,num]...[,&err])
 CALL SORT3(cstmt,loc1,loc2,len,loc3,len3
 [,num]...[,&err])
 CALL SORT4(cstmt,loc4,loc2[,num]...[,&err])

 PL/I(F): CALL PLCALL(SORT2,n,cstmt,ADDR(loc1),ADDR(loc2),
 ADDR(len)[,ADDR(num)]...);
 CALL PLCALL(SORT3,n,cstmt,ADDR(loc1),
 ADDR(loc2),ADDR(len),ADDR(loc3),
 ADDR(len3)[,ADDR(num)]...);
 CALL PLCALL(SORT4,n,cstmt,ADDR(loc4),ADDR(loc2)
 [,ADDR(num)]...);

 Parameters:

 cstmt is the location of the control statement. _____
 loc1 is the location of the first element of the ____
 data set or array to be sorted.
 loc2 is the location of the last element of the ____
 data set or array to be sorted.
 len is the location of the fullword integer ___
 length of each element in the data set to be
 sorted. The value of len may range between 1 ___
 and 256 bytes.
 num (optional) is the location of a positive, ___
 nonzero, fullword integer that specifies a
 numeric value in the control statement.
 loc3 is the location of the first element in the ____
 tag data set or array.
 len3 is the location of the fullword integer ____
 length of each element of the tag data set.
 The value of len3 may range between 1 and 256 ____
 bytes.
 loc4 is the location of the first element of the ____
 data set or array of 4-byte addresses to be

 SORT2, SORT3, SORT4 475

 MTS 3: System Subroutine Descriptions

 April 1981

 sorted according to attributes of the data
 referenced by the addresses.
 err (optional) is the statement label to transfer ___
 to if an error (nonzero return code) is
 detected by the subroutine.
 n is the number of arguments (FIXED BINARY(31)) _
 to be passed to the subroutine.

 Return Codes:

 0 Successful return.
 4 An error has occurred and the subroutine has
 issued diagnostics via the logical I/O unit
 SERCOM.

 Description: See the section "The SORT Utility Program" in MTS Volume
 5, System Services. _______________

 Summary of the Control Statement ________________________________

 Prototype:

 [[SORT][=[[type],[aspect],[location],[length],]... _
 [type][,[aspect][,[location][,[length]]]]]]
 [DS=delimiter[string]delimiter■]...
 [additional parameter]...
 END■ _

 Collating fields:

 TYPE | CODE | SIGN PRESENT | FIELD LENGTH (BYTES)
 ─────────────────────────┼───────┼──────────────┼───────────────────────
 | | |
 alignment | AL | no | 1 - 4095 _
 binary | BI | no | 1 - 256 _
 bit | BT | no | 1 - 255 (mask)
 call | CA | - | 1 - 4095
 character | CH | no | 1 - 256 _
 defined sequence | DS(i) | no | 1 - 256 _ ___
 fixed-point | FI | yes | 1 - 260 _
 floating-point | FL | yes | 2 - 16
 packed decimal | PD | yes | 1 - 16 _
 signed decimal | SD | yes | 1 - 17 _
 zoned decimal | ZD | yes | 1 - 16 _

 Additional parameter:

 DEC (delete comments) __

 476 SORT2, SORT3, SORT4

 MTS 3: System Subroutine Descriptions

 April 1981

 SORT4F ______

 Subroutine Description

 Purpose: To sort an array of FORTRAN indexes such that if the data
 referenced by the indexes were substituted for the inde-
 xes, the data would be in the order described by the
 control statement.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: CALL SORT4F(cstmt,loc1,loc2,dim,array,dimary,
 len[,num]...[,&err1[,&err2]])

 Parameters:

 cstmt is the location of the SORT control state- _____
 ment, which has the same requirements and
 restrictions as for SORT4.
 loc1 is the location of the first element of the ____
 dim-by-N, INTEGER*4 array containing the sub- ___
 scripts to be sorted. Each of the N columns
 of this array contains a set of subscripts
 for an element in array. _____
 loc2 is the location of the last element of the ____
 array containing the subscripts to be sorted.
 If the subscripts for the first element of
 this array are (1,1), the subscripts for the
 last element will be (dim,N). ___
 dim is the location of the INTEGER*4 number of ___
 dimensions for array. _____
 array is the location of the array containing the _____
 data referenced by the subscripts to be
 sorted.
 dimary is the location of the first element of a ______
 dim-element, INTEGER*4 array containing the ___
 size of each dimension of array. _____
 len is the location of the INTEGER*4 length of ___
 each element of array. _____
 num (optional) is the location of a positive, ___
 nonzero, INTEGER*4 specification of a numeric
 value in the control statement.
 err1 (optional) is the statement label to transfer ____
 to if an error is detected by SORT4.
 err2 (optional) is the statement label to transfer ____
 to if a parameter error is detected by
 SORT4F. These errors include loc1 or loc2 ____ ____
 not being the location of an appropriate

 SORT4F 477

 MTS 3: System Subroutine Descriptions

 April 1981

 array element, an index being greater than
 the size of the corresponding dimension spec-
 ified in dimary, and excessive dimary or len ______ ______ ___
 values.

 Description: The indexes in the array delimited by loc1 and loc2 are ____ ____
 converted to addresses which are passed to SORT4. On
 return from SORT4, the addresses are converted back to
 indexes. If an error is detected, the values in the index
 array will be invalid.

 Examples: FORTRAN: INTEGER DIM(2)/5,256/,INDEX(2,256),
 1 NAMES(5,256)
 ...
 DO 1010 I=1,N
 INDEX(1,I)=1
 1010 INDEX(2,I)=I
 CALL SORT4F(’SORT=CH,A,1,20 END ’,
 1 INDEX(1,1),INDEX(2,N),2,NAMES,DIM,4,
 2 &9910,&9900)
 WRITE (6,2000) ((NAMES(I,INDEX(2,J)),
 1 I=1,5),J=1,N)
 2000 FORMAT (1X,5A4)
 ...
 9900 WRITE (6,9990)
 9910 STOP
 9990 FORMAT (’ SORT4F ERROR’)
 ...

 The above example generates indexes for the N, 20-
 character names in the array NAMES, sorts the indexes, and
 prints the names in alphabetical order.

 INTEGER INDEX(256),NAMES(5,256)
 ...
 DO 1010 I=1,N
 1010 INDEX(I)=I
 CALL SORT4F(’SORT=CH,A,1,20 END ’,INDEX,
 1 INDEX(N),1,NAMES,256,20,&9910,&9900)
 WRITE (6,2000) ((NAMES(I,INDEX(J)),
 I=1,5),J=1,N)
 2000 FORMAT (1X,5A4)
 ...
 9900 WRITE (6,9990)
 9910 STOP
 9990 FORMAT (’ SORT4F ERROR’)
 ...

 The above example is the same as the preceding one except
 that the call on SORT4F assumes that NAMES is a
 1-dimensional array with elements of length 20.

 478 SORT4F

 MTS 3: System Subroutine Descriptions

 April 1981

 SPELLCHK ________

 Purpose: To determine if a word is a possible misspelling of a
 another word.

 Location: Resident System

 Alt. Entry: SPELCK

 Calling Sequences:

 Assembly: CALL SPELLCHK,(goodwd,testwd,goodl,testl)

 FORTRAN: i=SPELCK(goodwd,testwd,goodl,testl)

 Parameters:

 goodwd is the location of the word that is known to ______
 be correctly spelled.
 testwd is the location of the word that is to be ______
 compared against goodwd. ______
 goodl is the location of a fullword integer _____
 (INTEGER*4) giving the length of goodwd. The ______
 length must be between 1 and 32 (inclusive).
 testl is the location of a fullword integer _____
 (INTEGER*4) giving the length of testwd. The ______
 length must be between 1 and 32 (inclusive)
 and must not differ from goodl by more than _____
 1.

 Values Returned:

 GR0 contains the value 1 if testwd is a possible ______
 misspelling of goodwd or the value -1 if testwd and ______ ______
 goodwd are identical; otherwise, GR0 contains the ______
 value 0. For FORTRAN calls, this value is returned
 as a function value in i (i may be treated either as _ _
 an INTEGER or LOGICAL value, of any length).

 Return Codes:

 0 Successful return (GR0 is set as above).
 4 Error return (error in goodl or testl parameters; _____ _____
 GR0 is set to 0).

 Description: This subroutine uses a slight variation of the spelling
 correction algorithm presented by H. L. Morgan in "Spell-
 ing Correction in Systems Programs," Communications of the _____________________
 ACM, Vol. 13, No. 2 (February 1970). ___

 SPELLCHK 479

 MTS 3: System Subroutine Descriptions

 April 1981

 The algorithm will detect spelling errors consisting of:

 (1) two letters transposed,
 (2) one letter omitted,
 (3) one letter inserted, or
 (4) one letter erroneous.

 Examples: Assembly: CALL SPELLCHK,(=C’GOOD’,TEXT,4,N)
 ST 0,I
 .
 .
 TEXT DS CL4
 N DS F
 I DS F

 FORTRAN: INTEGER SPELCK
 LOGICAL*1 TEXT(4)
 ...
 I = SPELCK(’GOOD’,TEXT,4,N)

 The above example, coded in assembly language and FORTRAN,
 check the character string contained in TEXT against the
 string "GOOD".

 480 SPELLCHK

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 SPIE ____

 Subroutine Description

 Purpose: To specify the address of a program interrupt exit routine
 and to specify the program interrupt types that are to
 cause the exit routine to be given control¹.

 Location: *LIBRARY

| Alt. Entry: SPIES

 Calling Sequences:

 Assembly: LA 1,pica
 CALL SPIE

| CALL SPIES,(pica,oldpica),VL

 Note: This subroutine is normally called by
 using the SPIE macro. See the SPIE macro
 description in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

| FORTRAN: CALL SPIES(pica,oldpica,&rc4)

 Parameters:

| pica (GR1) is the location of a 6-byte region ____
 containing the program interrupt control
 area. The first byte contains the bits that
 are to be set into the program mask in the
 PSW. When a bit is set, the corresponding
 interrupt type is enabled and can occur. The
 bits are:

 Bits 0-3: Zero
 Bit 4: Fixed-point overflow
 5: Decimal overflow
 6: Exponent underflow
 7: Significance

 The next three bytes contain the address of
 the exit routine to be given control after a
 program interrupt of the type specified in

 ¹OS/360 System Supervisor Services and Macro Instructions, form __
 GC28-6646.

 SPIE 481

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 the interruption mask. The last two bytes
 contain the interruption mask for the program
 interrupt types to cause control to be given
 to the exit routine. Each bit corresponds to
 a program interrupt type. These are:

 Bit 0: Zero
 1: Operation
 2: Privileged operation
 3: Execute
 4: Protection
 5: Addressing
 6: Specification
 7: Data
 8: Fixed-point overflow
 9: Fixed-point divide
 10: Decimal overflow
 11: Decimal divide
 12: Exponent overflow
 13: Exponent underflow
 14: Significance
 15: Floating-point divide

 If the user wishes to specify a type of
 program interrupt for which the interruption
 has been disabled, he must enable the inter-
 ruption by setting the corresponding bit in
 the first byte of program mask bits.

| A call on SPIE with pica containing zero ____
 cancels the effect of the previous call.

| oldpica is a region to store the address of the _______
| previous PICA.

 Value Returned:

 GR1 contains the address of the previous PICA. If
 there is no previous PICA from a previous call on
 SPIE, a zero is returned.

| Return Codes:
|
| 0 Successful return.
| 4 Invalid parameter or no VL bit specified.

 Description: When a program begins execution, all program interrupts
 that can be disabled are disabled, and a standard program
 interrupt exit routine is provided. This program inter-
 rupt exit routine is given control when any program
 interruptions occur. By calling the SPIE (Set Program
 Interruption Exit) subroutine, the user can specify his

 482 SPIE

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 own program interrupt exit routines to be given control
 when a particular type(s) of program interruption occurs.

 After the SPIE subroutine has been called by the user’s
 program, his exit routine receives control for all inter-
 ruptions that have been specified by the interruption
 mask. For other interruptions, the normal program inter-
 ruption exit routine is given control. Each succeeding
 call to the SPIE subroutine overrides the specifications
 given in the previous call.

 The SPIE subroutine records the location of the program
 interrupt control area (PICA). The PICA contains the new
 program mask for the interruption types that can be
 disabled, the address of the exit routine, and an inter-
 ruption mask for the interrupt types to cause control to
 be given to the exit routine. A program that issues a
 call to SPIE must eventually restore the PICA to the one
 that was effective when control was received. If there
 was no previous call to SPIE, restoring the PICA is
 equivalent to cancelling the current SPIE call and return-
 ing to normal interrupt processing. When the SPIE sub-
 routine is called, the subroutine returns the address of
 the previous PICA in GR1. If there was no previous PICA,
 then a zero is returned in GR1.

 With the first call to the SPIE subroutine, a 32-byte
 program interruption element (PIE) is created in the
 subroutine. This program interruption element is used
 each time a call is made to SPIE. The PIE contains the
 following information:

 Word 1: Current PICA address.
 Words 2-3: Old Program Status Word.
 Words 4-8: GRs 14, 15, 0, 1, and 2.

 The PICA address in the PIE is the address of the PICA
 used in the last call to SPIE. When control is passed to
 the exit routine indicated in the PICA, the old PSW
 contains the interruption code in bits 16-31; these bits
 can be tested to determine the cause of the program
 interruption. The contents of GRs 14, 15, 0, 1, and 2 at
 the time of interruption are stored by SPIE in the PIE as
 indicated. When control is passed to the exit routine,
 the register contents are as follows:

 GR 0: Internal control information.
 GR 1: Address of the PIE.
 GRs 2-13: Same as when the program interrupt
 occurred. The exit routine must not use
 GR13 as a save area pointer.
 GR 14: Return address (to the SPIE subroutine).
 GR 15: Address of the exit routine.

 SPIE 483

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 The exit routine must return control to SPIE by using the
 address in GR14. SPIE restores GRs 14, 15, 0, 1, and 2
 from the PIE after control is returned but does not
 restore the contents of GRs 3-13. If a program interrupt
 occurs when the exit routine is in control, normal
 interruption processing occurs.

| A call on the SPIES subroutine takes the S-type parameters
| and loads them into an R-type call on the SPIE subroutine.

 Example: This example specifies an exit routine called FIXUP that
 is to be given control if a fixed-point overflow occurs.
 The address returned in GR1 is stored in HOLD. This is
 zero for the first call on SPIE. At the end of the
 program, the call second call on SPIE disables the user
 program interrupt processing.

 LA 1,PICA
 CALL SPIE
 ST 1,HOLD
 .
 .
 L 1,HOLD
 CALL SPIE
 .
 .
 HOLD DS F
 PICA DC B’00001000’ Program mask bits
 DC AL3(FIXUP) Exit routine address
 DC X’0080’ Interruption mask

 The same example using the SPIE macro.

 SPIE FIXUP,(8)
 ST 1,HOLD
 .
 .
 L 1,HOLD
 SPIE MF=(E,(1))
 HOLD DS F

 484 SPIE

 MTS 3: System Subroutine Descriptions

 April 1981

 SPRINT ______

 Subroutine Description

 Purpose: To write an output record on the logical I/O unit SPRINT.

 Location: Resident System

 Alt. Entry: SPRINT#

 Calling Sequences:

 Assembly: CALL SPRINT,(reg,len,mod,lnum)

 FORTRAN: CALL SPRINT(reg,len,mod,lnum,&rc4,...)

 Parameters:

 reg is the location of the virtual memory region ___
 from which data is to be transmitted.
 len is the location of a halfword (INTEGER*2) inte- ___
 ger giving the number of bytes to be _____
 transmitted.
 mod is the location of a fullword of modifier bits ___
 used to control the action of the subroutine.
 If mod is zero, no modifier bits are specified. ___
 See the "I/O Modifiers" description in this
 volume.
 lnum (optional) is the location of a fullword integer ____
 giving the internal representation of the line
 number that is to be written or has been written
 by the subroutine. The internal form of the
 line number is the external form times 1000,
 e.g., the internal form of line 1 is 1000, and
 the internal form of line .001 is 1.
 rc4,... is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 Return Codes:

 0 Successful return.
 4 Output device is full.
 >4 See the "I/O Subroutine Return Codes" description
 in this volume.

 Description: The subroutine writes a record of length len (in bytes) ___
 from the region specified by reg on the logical I/O unit ___
 SPRINT. The parameter lnum is needed only if the mod ____ ___
 parameter or the FDname specifies either INDEXED or PEEL

 SPRINT 485

 MTS 3: System Subroutine Descriptions

 April 1981

 (RETURNLINE#). If INDEXED is specified, the line number
 to be written is specified in lnum. If PEEL is specified, ____
 the line number of the record written is returned in lnum. ____

 If len is zero when writing to a line file, the line is ___
 deleted from the file.

 The default FDname for SPRINT is *SINK*.

 There is a macro SPRINT in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for SPRINT in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Examples: The example below, given in assembly language and FORTRAN,
 calls SPRINT specifying an output region of 80 bytes. No
 modifier specification is made in the subroutine call.

 Assembly: CALL SPRINT,(REG,LEN,MOD)
 .
 .
 REG DS CL80
 MOD DC F’0’
 LEN DC H’80’

 or

 SPRINT REG Subr. call using macro

 FORTRAN: INTEGER REG(20),LEN*2/80/
 ...
 CALL SPRINT(REG,LEN,0)

 486 SPRINT

 MTS 3: System Subroutine Descriptions

 April 1981

 SPUNCH ______

 Subroutine Description

 Purpose: To write an output record on the logical I/O unit SPUNCH.

 Location: Resident System

 Alt. Entry: SPUNCH#

 Calling Sequences:

 Assembly: CALL SPUNCH,(reg,len,mod,lnum)

 FORTRAN: CALL SPUNCH(reg,len,mod,lnum,&rc4,...)

 Parameters:

 reg is the location of the virtual memory region ___
 from which data is to be transmitted.
 len is the location of a halfword (INTEGER*2) inte- ___
 ger giving the number of bytes to be _____
 transmitted.
 mod is the location of a fullword of modifier bits ___
 used to control the action of the subroutine.
 If mod is zero, no modifier bits are specified. ___
 See the "I/O Modifiers" description in this
 volume.
 lnum (optional) is the location of a fullword integer ____
 giving the internal representation of the line
 number that is to be written or has been written
 by the subroutine. The internal form of the
 line number is the external form times 1000,
 e.g., the internal form of line 1 is 1000, and
 the internal form of line .001 is 1.
 rc4,... is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 Return Codes:

 0 Successful return.
 4 Output device is full.
 >4 See the "I/O Subroutine Return Codes" description
 in this volume.

 Description: The subroutine writes a record of length len (in bytes) ___
 from the region specified by reg on the logical I/O unit ___
 SPUNCH. The parameter lnum is needed only if the mod ____ ___
 parameter or the FDname specifies either INDEXED or PEEL

 SPUNCH 487

 MTS 3: System Subroutine Descriptions

 April 1981

 (RETURNLINE#). If INDEXED is specified, then the line
 number to be written is specified in lnum. If PEEL is ____
 specified, the line number of the record written is
 returned in lnum. ____

 If len is zero when writing to a line file , the line is ___
 deleted from the file.

 The default FDname for SPUNCH is *PUNCH* (for batch mode
 only) if a global card limit was specified on the $SIGNON
 command. There is no default for conversational mode or
 for batch mode if no global card limit was specified.

 There is a macro SPUNCH in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for SPUNCH in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Examples: The example below, given in assembly language and FORTRAN,
 calls SPUNCH specifying an output region of 80 bytes. No
 modifier specification is made in the subroutine call.

 Assembly: CALL SPUNCH,(REG,LEN,MOD)
 .
 .
 REG DS CL80
 MOD DC F’0’
 LEN DC H’80’

 or

 SPUNCH REG Subr. call using macro

 FORTRAN: INTEGER REG(20),LEN*2/80/
 ...
 CALL SPUNCH(REG,LEN,0)

 488 SPUNCH

 MTS 3: System Subroutine Descriptions

 April 1981

 SRCHI _____

 Subroutine Description

 Purpose: To perform a binary-search based on the results of
 user-supplied comparisions of the search argument and
 successive subroutine-selected elements of an ordered
 list.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL SRCHI0,(num)
 CALL SRCHI,(switch)

 FORTRAN: INTEGER*4 SRCHI
 CALL SRCHI0(num)
 index=SRCHI(switch)

 PL/I(F): DECLARE PLCALLF RETURNS(FIXED BINARY(31));
 CALL PLCALL(SRCHI0,f1,ADDR(num));
 index=PLCALLF(SRCHI,f1,ADDR(switch));

 Parameters:

 num is the location of the fullword integer ___
 specifying the number of elements in the
 ordered list to be searched.
 switch is the location of a fullword switch indicat- ______
 ing whether the search value precedes or
 follows the comparand specified by the index
 returned by the previous call on SRCHI or
 whether a new search is to begin. The
 choices are:

 0 Initialize a search of an ordered list of
 num elements and return the index of the ___
 first comparand of the search (the "mid-
 dle" element).
 >0 The search argument value is greater than
 the comparand specified by the index re-
 turned by the previous call on SRCHI.
 <0 The search argument value is less than the
 comparand specified by the index returned
 by the previous call on SRCHI.

 f1 is a fullword (FIXED BINARY(31)) containing __
 the integer 1.

 SRCHI 488.1

 MTS 3: System Subroutine Descriptions

 April 1981

 Values Returned:

 index is the location of a fullword integer con- _____
 taining the index of the next ordered list
 value to be compared with the search value.
 (The first element of the ordered list has
 index 1; the last element of the list has
 index num.) The return value possibilities ___
 are as follows:

 <0 The ordered list is exhausted. The abso-
 lute value of this number is the index of
 the list element where the search value
 could be inserted to maintain the list
 order. If this value is "-i", then the
 search value lies between the list values
 with indices "i-1" and "i".
 0 Either (1) SRCHI0 was not called or was
 called with a negative argument num, or ___
 (2) SRCHI was not called with a zero
 switch argument either after SRCHI0 was
 called or after SRCHI returned a negative
 index indicating list exhaustion.
 >0 The value indicates which element of the
 ordered list is to be examined next.

 For assembly language programs, this value
 will be returned in general register 0.

 Description: The index values returned by the SRCHI subroutine indicate
 which elements of an ordered list should be examined while
 performing a binary search. Note that if the list has "n"
 elements, then the maximum number of comparisons for a
 binary search is log(base 2)n=log n/log 2. In contrast,
 the average number of comparisons for a sequential search
 is "n/2" for uniformly distributed search values. Hence,
 for large lists, the binary search method is far more
 efficient than simple linear sequential searches. For
 example, a binary search of a 256-element list will have
 at most 8 comparisons while a linear search of that list
 will have, on the average, 128 comparisons with uniformly-
 distributed search values. Tests using a FORTRAN array
 indicate that the use of SRCHI may produce more efficient
 results than a linear search when the number of elements
 in the array is approximately 32 or greater.

 Because only the calling program accesses the list ele-
 ments, the list may have any data structure of any size
 with data types of the user’s choice. For example, the
 list need not be an array, but its elements should be
 accessible via some user-formulated index function of the
 SRCHI-returned index.

 488.2 SRCHI

 MTS 3: System Subroutine Descriptions

 April 1981

 The list elements must be ordered according to the rules
 used to determine the value of switch. The element having ______
 the value which precedes all other values in the list must
 be the first element of the list, etc. In the case of
 arrays, it may be possible to produce the required
 ordering by calling SORT2, SORT3, SORT4, or SORT4F prior
 to beginning the search portion of the program.

 Examples: FORTRAN: INTEGER*4 DIFF, SRCHI
 ...
 C Define the list size.
 CALL SRCHI0(NUM)
 ...
 C Initialize the search.
 SWITCH=0
 C Produce an element index.
 10 INDX=SRCHI(SWITCH)
 C Check for exhausted list, invalid
 C argument, or valid new index.
 IF (INDX) 30,40,20
 C Compare indexed value with search value.
 20 SWITCH=KEY-LIST(INDX)
 C If KEY value not found, continue search.
 IF (SWITCH.NE.0) GO TO 10

 ...

 C This section executed if KEY=LIST(INDX).

 30 ...

 C This section executed if KEY is NOT in
 C LIST. If KEY were to be inserted in LIST,
 C it would be the (-INDX)th element of LIST.

 40 ...

 C This section is executed if SRCHI
 C is not properly initialized.

 The above example searches the integer array LIST of
 N elements for a value equal to KEY.

 PL/I(F): DECLARE (DIFF,INDX,KEY,N) FIXED BINARY(31);
 DECLARE F1 FIXED BINARY(31) INIT(1);
 DECLARE PLCALLF RETURNS
 (FIXED BINARY(31));
 DECLARE (SRCHI0,SRCHI) ENTRY;
 DECLARE SWITCH BIT(1);
 ...
 /* Define the list size. */
 CALL PLCALL(SRCHI0,F1,ADDR(N));

 SRCHI 488.3

 MTS 3: System Subroutine Descriptions

 April 1981

 ...
 /* Initialize the search. */
 DIFF=0;
 SWITCH=’1’B;
 DO WHILE(SWITCH);
 /* Produce an index. */
 INDX=PLCALLF(SRCHI,F1,ADDR(DIFF));
 IF INDX>0 THEN DO;
 DIFF=KEY-LIST(INDX);
 SWITCH=DIFF¬=0;
 END;
 ELSE SWITCH=’0’B;
 END;
 IF INDX>0 THEN DO;
 ...
 /* This section executed if KEY=LIST(INDX) */
 ...
 END;
 ELSE IF INDX<0 THEN DO;
 ...
 /* This section executed if KEY is NOT in LIST
 If KEY were inserted in LIST, it would be
 the (-INDX)th element in LIST. */
 ...
 END;
 ELSE DO;
 ...
 /* This section executed if SRCHI is not
 properly initialized. */
 ...
 END;

 The above PL/I(F) example performs the same search as
 the preceding FORTRAN example.

 488.4 SRCHI

 MTS 3: System Subroutine Descriptions

 April 1981

 STARTF ______

 Subroutine Description

 Purpose: To execute a program dynamically loaded by the subroutine
 LOADF.

 Location: Resident System

 Calling Sequence:

 FORTRAN: CALL STARTF(id,par1,par2,...)

 Parameters:

 id is the location of the fullword integer storage __
 index number of the program that was dynamically
 loaded by LOADF (the value returned by LOADF),
 or is the location of an 8-character entry point
 name, left-justified with trailing blanks.
 par1,par2,... (optional) are the parameters to be _____________
 passed to the program being executed. There may
 be any number of parameters passed, including
 none.

 Values Returned:

 None.

 Description: STARTF is used to execute a program loaded by the
 subroutine LOADF. STARTF should be used whenever the
 calling program and the program being called are FORTRAN
 programs or programs which use the FORTRAN I/O library.
 This is necessary in order to provide the proper I/O
 environment for both the called program and the calling
 program on return. In providing this, the I/O library
 environment is established in accordance with the "merge"
 bit. If the merge bit is 1, then both the calling and
 called programs use the same I/O library environment; if
 the merge bit is 0, then the calling and called programs
 each use a separate copy of the I/O library environment,
 thus performing relatively independent I/O operations.

 If id is a storage index number, the dynamically loaded __
 program at that storage index number is invoked at the
 entry point determined by the loader. If id is a symbol, __
 and if the MTS global SYMTAB option is ON, the dynamically
 loaded program is invoked at the location associated with
 that symbol in the loader symbol table.

 STARTF 489

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: INTEGER*4 PAR1/’ARG1’/,PAR2/’ARG2’/
 INTEGER*4 INFO/Z80000000/,SWITCH/Z00000040/
 ID = LOADF(’FORTOBJ ’,INFO,SWITCH,0)
 CALL STARTF(ID,PAR1,PAR2)
 CALL UNLDF(’FORTOBJ ’,0,0)

 This example loads the program in the file FORTOBJ and
 executes it. The merge bit is set to 1 so that both
 programs use the same I/O environment.

 490 STARTF

 MTS 3: System Subroutine Descriptions

 April 1981

 STDDMP ______

 Subroutine Description

 Purpose: To dump a region of the user’s virtual memory in the MTS
 standard format. For dumping registers, dumping with
 mnemonics, and other options, see the SDUMP subroutine
 description in this volume.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL STDDMP,(switch,outsub,wkarea,first,last)

 Parameters:

 switch is the location of a fullword of information. ______
 The first halfword of switch is taken as the ______
 storage index number that will be printed out
 in the heading line. The remainder of switch ______
 is taken as a group of switches as follows:

 bit 20: (Integer value = 2048) NOLIB
 If set, the call will be ignored if
 LOADINFO declares that the region of
 storage is part of a library
 subroutine.
 28: (Integer value = 8) DOUBLE SPACE
 If this bit is set, the lines of the
 dump will be double spaced. Other-
 wise the normal single spacing will
 occur.

 outsub is the location of a subroutine that will be ______
 called by STDDMP to "print" a line. This
 subroutine is assumed to have the same call-
 ing sequence as the SPRINT subroutine.
 wkarea is the location of a 100-word (fullword ______
 aligned) region which STDDMP will use as a
 work area.
 first is the location of the first byte of a _____
 virtual memory region to be dumped. There
 are no boundary requirements for this
 address.
 last is the location of the last byte of a virtual ____
 memory region to be dumped. There are no
 boundary requirements for this address; how-
 ever, an address in last which is less than ____
 the address in first will cause an error _____
 return.

 STDDMP 491

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 Successful return.
 4 Illegal parameters.

 Description: This subroutine uses the same calling sequence as the
 subroutine SDUMP, but only looks at the bits and parame-
 ters as specified above in the calling sequence.

 For each call, this subroutine "prints" (calls the output
 subroutine specified in outsub) the following: ______

 (1) Blank line.
 (2) Heading giving information about the region of
 storage. The subroutine LOADINFO is called to
 obtain the information.
 (3) Blank line.
 (4) Dump of the region, with 20 (hex) bytes printed
 per line. To the left of the hexadecimal dump is
 the actual hex location and the relative (to the
 first byte of the region) hex location of the
 first byte of the line; to the right of the dump
 is the same information printed as characters.
 Nonprinting characters (bit combinations that do
 not match the standard 60 character set of print-
 ing graphics) are replaced by periods, and an
 asterisk (*) is placed at each end of the charac-
 ter string to delimit it. The lines "printed" are
 133 characters long.

 Example: Assembly: EXTRN SPRINT
 CALL STDDMP,(SW,SPRINT,WK,FIRST,FIRST+3)
 .
 .
 WK DS 50D
 SW DC F’0’
 FIRST DC X’F1F2F3F4’

 The above example will cause STDDMP to print the hexadeci-
 mal string ’F1F2F3F4’.

 492 STDDMP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 SVCTRP ______

 Subroutine Description

 Purpose: To suspend program execution whenever an SVC instruction
 is executed by a user program.

 Location: Resident System

| Alt. Entries: SVCTRPS, SVCTPS

 Calling Sequences:

 Assembly: LM 0,1,=A(exit,region)
 CALL SVCTRP

| CALL SVCTRPS,(exit,region),VL
|
| FORTRAN: CALL SVCTPS(exit,region,&rc4)

 Parameters:

| exit (GR0) should be zero or the location to ____
| transfer to if an SVC instruction is
| executed.
| region (GR1) should should contain the location of a ______
| 72-byte save region for storing pertinent
| information.
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
| 4 Illegal parameter or no VL bit specified.

 Description: A call on the subroutine SVCTRP sets up an SVC intercept
 for one SVC instruction only. The calling sequence
 specifies the save region for storing information and a
 location to transfer to upon the next occurrence of an SVC
 instruction in the user program. When an SVC instruction
 is encountered and the exit is taken, the intercept is
 cleared so that another call to SVCTRP is necessary to
 intercept the next SVC instruction. When a SVC instruc-
 tion occurs, the exit is taken in the form of a subroutine
 call (BALR 14,15 with a GR13 save region provided) to the
 location specified by the GR0 value in the call to SVCTRP.
 If the exit subroutine returns to MTS (BR 14), MTS will
 declare the SVC instruction invalid, suspend program
 execution, and print a message providing the location of
 the intercept.

 SVCTRP 492.1

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 If GR0 is zero on a call to SVCTRP, the SVC intercept is
 disabled. GR1 should point to a valid save region in this
 case also.

 When the SVC intercept exit is taken, the first eight
 bytes of the save region contain the PSW, and the
 remainder contains the contents of general registers 0
 through 15 (in that order) at the time of the intercept.
 The PSW stored in the savearea is always in BC mode (bit
 12 is zero). The floating-point registers remain as they
 were at the time of the intercept. GR1 will contain the
 location of the save region. The contents of GR0 and GR2
 to GR12 are unpredictable.

 If, on a call to SVCTRP, the first byte of the save region
 is X’FF’, SVCTRP does not return to the calling program;
 rather the right-hand half of the PSW and the general
 registers are immediately restored from the save region
 and a branch is made to the location specified in the
 second word of the region. This type of call on SVCTRP,
 after the first SVC instruction has been intercepted,
 allows the user to set a switch (for example) and to
 return to the point following the SVC instruction with the
 intercept again enabled.

 The SVCTRP item of the GUINFO/CUINFO subroutine may be
 used to save a previously set exit to allow nesting of SVC
 intercepts.

 Note: This subroutine will intercept only SVC instruc-
 tions that are executed by the user’s program; it will not
 intercept those that are executed by the operating system.

| A call on the SVCTRPS or SVCTPS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the SVCTRP subroutine.

 Example: In this example, the location of the first SVC instruction
 in a user program is recorded and execution is resumed
 with at the SVC instruction.

 492.2 SVCTRP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 LM 0,1,=A(EXIT,REGION)
 CALL SVCTRP The intercept is enabled.
 ...
 USING EXIT,15
 EXIT L 0,4(,1) Get address of SVC
 SL 0,=F’2’ Back up to SVC instruction
 ST 0,FIRSVC Remember location
 ST 0,4(,1) Restart at SVC
 MVI 0(1),X’FF’
 SR 0,0 Disable further intercepts
 CALL SVCTRP Note GR1 points to REGION
 REGION DS 18F
 FIRSVC DS A

 SVCTRP 492.3

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 492.4 SVCTRP

 MTS 3: System Subroutine Descriptions

 April 1981

 SYSTEM ______

 Subroutine Description

 Purpose: To terminate execution successfully.

 Location: Resident System

 Alt. Entry: SYSTEM#

 Calling Sequence:

 Assembly: CALL SYSTEM

 or

 SYSTEM

 FORTRAN: CALL SYSTEM

 Note: The complete description for using the SYSTEM
 macro is given in MTS Volume 14, 360/370 Assem- ______________
 blers in MTS. ____________

 Description: The SYSTEM subroutine terminates execution and returns
 control to MTS or to the previous command language
 subsystem.

 The execution return code is set to 0. This may be tested
 by the $IF command, e.g.,

 $IF RUNRC=0, mts-command

 The execution return code and the message "EXECUTION
 TERMINATED" is displayed under the control of the $SET
 RCPRINT and ETM options (see MTS Volume 1, The Michigan _____________
 Terminal System) and the GUINFO item LASTEXRC (239). _______________

 Execution that is terminated by this subroutine cannot be
 restarted by the $RESTART command. Calling this sub-
 routine is equivalent to the program doing a normal return
 (BR 14) from the call that started execution.

 All storage acquired for the executing program and all
 usages of files and devices by the program are released.

 SYSTEM 493

 MTS 3: System Subroutine Descriptions

 April 1981

 494 SYSTEM

 MTS 3: System Subroutine Descriptions

 April 1981

 TAPEINIT ________

 Subroutine Description

 Purpose: To initialize a labeled or unlabeled magnetic tape.

 Location: *LIBRARY

 Alt. Entry: TPINIT

 Calling Sequences:

 Assembly: CALL TAPEINIT,(tape,mode,volume,owner,
 lbltype),VL

 FORTRAN: CALL TPINIT(tape,mode,volume,owner,lbltype,
 &rc4,&rc8,&rc12,&rc16,&rc20)

 Parameters:

 tape is the location of either ____
 (a) an FDUB-pointer (such as returned by
 GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS)
 for the tape which is to be initialized.
 mode is the location of the 4-character density at ____
 which the tape is to be mounted (e.g.,
 ’1600’, ’6250’, ’556 ’).
 volume is the location of a 6-character volume name. ______
 This parameter may be omitted.
 owner is the location of a 10-character ownerid. _____
 This parameter may be omitted.
 lbltype (optional) is the location of a 6-character _______
 label type (e.g., "OS/VS ", "VLO ", or
 "ANSI ").
 rc4,...,rc20 (optional) are statement labels to ____________
 transfer to if a nonzero return codes occur.

 Return Codes:

 0 Successful return--tape was initialized.
 4 tape does not specify a labelable tape--it was not ____
 a magnetic tape, it was mounted without the file
 protect ring in, or it was a pool tape.
 8 mode was not valid for the tape drive on which the ____
 tape was mounted.
 12 Write error occurred while attempting to initial-

 TAPEINIT 495

 MTS 3: System Subroutine Descriptions

 April 1981

 ize the tape.
 16 volume is invalid (contains an embedded comma or ______
 blank).
 20 owner was not valid (a program interrupt occurred _____
 while attempting to access it).

 Description: The tape must have been mounted with WRITE=YES or RING=IN
 specified on the mount request.

 If volume and owner are omitted, the tape is initialized ______ _____
 as an unlabeled tape, i.e., label processing is disabled,
 6 filemarks are written at the specified density at the
 beginning of the tape, and the tape is rewound. If volume ______
 is given, (1 to 6 characters without embedded commas or
 blanks, padded to 6 character with trailing blanks as
 necessary), the tape is initialized as a labeled tape, is
 rewound, and label processing is enabled. owner will be _____
 included in the label as the ownerid if it is given;
 otherwise, the ownerid will be blanks.

 The label type parameter specifies that the tape is to be
 labeled according to the IBM standard if the lbltype is _______
 OS/VS or VLO, or specifies that the tape is be labeled
 according to the American National Standard Institute
 (ANSI) exchange format if lbltype is ANSI. If lbltype is _______ _______
 omitted, OS/VS is assumed.

 Assembly language users wishing to omit optional parame-
 ters should either follow the variable-length parameter
 list convention (the high-order bit of the last parameter
 adcon present in the parameter list is set to 1), or else
 supply zero adcons.

 Examples: Assembly: CALL TAPEINIT,(TWO,MODE),VL
 .
 .
 TWO DC F’2’
 MODE DC CL4’800’

 FORTRAN: CALL TPINIT,(2,’800 ’,&99)
 ...
 99 CALL ERROR

 Each of the above examples initializes the tape attached
 to logical I/O unit 2 as an unlabeled tape at 800 bpi.

 496 TAPEINIT

 MTS 3: System Subroutine Descriptions

 April 1981

 Assembly: CALL TAPEINIT,(TFDUB,MODE,VOL,OWNER),VL
 .
 .
 TFDUB DS A
 MODE DC CL4’6250’
 VOL DC CL6’TAPE1’
 OWNER DC CL10’UOFMICH’

 FORTRAN: CALL TPINIT(TFDUB,’6250’,’TAPE1 ’,
 ’UOFMICH ’,&999)
 ...
 999 ...

 Each of the above examples initializes the tape whose
 FDUB-pointer is in TFDUB as an OS/VS labeled tape at 6250
 bpi with volume name TAPE1 and ownerid UOFMICH.

 TAPEINIT 497

 MTS 3: System Subroutine Descriptions

 April 1981

 498 TAPEINIT

 MTS 3: System Subroutine Descriptions

 April 1981

 TICALL ______

 Subroutine Description

 Purpose: The FORTRAN interface to the MTS timer interrupt
 subroutines.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: aregion=TICALL(code,subr,value)

 CALL TICALL(code,subr,value,&rc4,&rc8)

 Parameters:

 code is the location of a fullword integer which ____
 specifies the meaning of the value parameter. _____
 The valid choices are

 0 value is an 8-byte integer which specifies _____
 a time interval in microseconds of task
 CPU time, relative to the time of the
 call.
 1 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds
 of real time, relative to the time of the
 call.
 2 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds
 of task CPU time, relative to the time at
 signon.
 3 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds
 of real time, relative to the time at
 signon.
 4 value is a 4-byte binary integer which _____
 specifies a time interval in timer units
 (13 1/48 microseconds per unit) of task
 CPU time, relative to the time of the
 call.
 5 value is a 16-byte EBCDIC string giving _____
 the time and date at which the interrupt
 is to occur, in the form HH:MM.SSMM-DD-YY.

 subr is the location of the subroutine to be ____
 called when the interrupt occurs. It should
 be a subroutine with no arguments, and should
 be declared EXTERNAL in the program which

 TICALL 499

 MTS 3: System Subroutine Descriptions

 April 1981

 calls TICALL.
 value is the location of a 4-, 8-, or 16-byte _____
 fullword-aligned region which specifies the
 time at which the interrupt is to occur, as
 determined by the code parameter. ____
 aregion will be assigned the location of the exit _______
 region used in calling SETIME and TIMNTRP.
 It is provided so that the user may subse-
 quently call the subroutines RSTIME or GETIME
 using

 CALL RSTIME(subr,value,aregion), or
 CALL GETIME(subr,value,aregion).

 If the interrupt has not been set up, because
 of an undefined code parameter or too many ____
 interrupts set up, aregion will be assigned _______
 the value zero.
 rc4,rc8 is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 Return Codes:

 0 Successful return
 4 Undefined code parameter ____
 8 Too many interrupts set up.

 Description: A timer interrupt is set up, to occur at the time
 specified by the code and value parameter. When the ____ _____
 interrupt occurs, the subroutine subr will be called with ____
 no arguments. If subr returns, the program will be ____
 restarted at the point of the interrupt.

 TICALL may be called several times, up to a maximum of 100
 times. When an interrupt occurs, further interrupts set
 up by TICALL will be disabled until the subroutine subr ____
 returns, at which time other interrupts will be reenabled
 if the return code is zero, and will remain disabled if
 the return code is nonzero.

 Example: EXTERNAL TIMOUT
 INTEGER ONESEC(2) /0,1000000/,REAL /1/
 ...
 CALL TICALL(REAL,TIMOUT,ONESEC)
 ...
 END

 SUBROUTINE TIMOUT
 ...
 (Process interrupt and reenable interrupts)
 ...
 RETURN

 500 TICALL

 MTS 3: System Subroutine Descriptions

 April 1981

 ...
 (Disable interrupts)
 ...
 RETURN 1
 ...
 END

 This example calls TICALL to set up a timer interrupt to
 occur after 1 second of real time from the time of the
 call to TICALL. When the interrupt is taken, the sub-
 routine TIMOUT will be called.

 TICALL 501

 MTS 3: System Subroutine Descriptions

 April 1981

 502 TICALL

 MTS 3: System Subroutine Descriptions

 April 1981

 TIME ____

 Subroutine Description

 Purpose: To allow the user easy access to the elapsed time, CPU
 time used, time of day, and the date in convenient units.

 Location: Resident System

 Alt. Entry: MTSTIME

 Calling Sequences:

 Assembly: CALL TIME,(key,pr,res)

 FORTRAN: CALL TIME(key,pr,res,&rc4,&rc8)

 Parameters:

 key is the location of a fullword integer describing ___
 what quantities are desired from the subroutine.
 The available choices are:

 0 the CPU, elapsed, supervisor, and problem
 state times are initialized (see below).
 1 the CPU time in milliseconds is returned as a
 fullword integer in res. ___
 2 the elapsed time in milliseconds is returned
 as a fullword integer in res. ___
 3 the CPU time in milliseconds is placed in the
 first word of the fullword-integer array res ___
 and the elapsed time in milliseconds is
 placed in the second word of res. ___
 4 the time of day is returned in res as an ___
 8-character value in the form "hh:mm:ss".
 5 the date is returned in res as a 12-character ___
 value in the form "mmm dd, 19yy". If "dd" is
 less than 10, the leading zero is replaced by
 a blank.
 6 the time of day is placed in the first 8
 characters of res (see key=4) and the date is ___ ___
 placed in the 9th through 20th characters of
 res (see key=5). ___ ___
 7 the supervisor state CPU time in seconds
 multiplied by 300x256 is placed in res as a ___
 fullword integer.
 8 the problem state CPU time in seconds multi-
 plied by 300x256 is placed in res as a ___
 fullword integer.
 9 the supervisor state CPU time (see key=7) is ___

 TIME 503

 MTS 3: System Subroutine Descriptions

 April 1981

 placed in the first word of the fullword-
 integer array res and the problem state CPU ___
 time (see key=8) is placed in the second word ___
 of res. ___
 10 the date is returned in res as an 8-character ___
 value in the form "mm-dd-yy".
 11 the time of day is placed in the first 8
 characters of res (see key=4 above) and the ___ ___
 date is placed in the 9th through 16th
 characters of res (see key=10 above). ___ ___
 12 the date is placed in the first 8 characters
 of res (see key=10 above) and the time of day ___ ___
 is placed in the 9th through 16th characters
 of res (see key=4 above). ___ ___
 13 the current number of seconds starting with
 March 1, 1900, 00:00:01 as "1" is placed in
 res as a 32-bit unsigned integer. ___
 14 the current number of minutes starting with
 March 1, 1900, 00:01 as "1" is placed in res ___
 as a fullword integer.
 15 the CPU time in microseconds is placed in the
 first and second words of the fullword-
 integer array res as a 64-bit integer. ___
 16 the elapsed time in microseconds is placed in
 the first and second words of the fullword-
 integer array res as a 64-bit integer. ___
 17 the CPU time in microseconds (see key=15) is ___
 placed in the first and second words of the
 fullword-integer array res and the elapsed ___
 time in microseconds (see key=16) is placed ___
 in the third and fourth words of res. ___
 18 the supervisor state CPU time in microseconds
 multiplied by 4096 is placed in the first and
 second words of the fullword-integer array
 res as a 64-bit integer. ___
 19 the problem state CPU time in microseconds
 multiplied by 4096 is placed in the first and
 second words of the fullword-integer array
 res as a 64-bit integer. ___
 20 the supervisor state CPU time (see key=18) is ___
 placed in the first and second words of the
 fullword-integer array res and the problem ___
 state CPU time (see key=19) is placed in the ___
 third and fourth words of res. ___
 21 the date is returned in res as a 16-character ___
 value in the form "www mmm dd/yy ", where
 "www" are the first three characters of the
 day of the week.
 22 the date (see key=21) is placed in the first ___
 16 characters of res and the time of day (see ___
 key=4) is placed in the 17th through 24th ___
 characters of res. ___
 23 the current number of microseconds starting

 504 TIME

 MTS 3: System Subroutine Descriptions

 April 1981

 with March 1, 1900, 00:00:00.000001 as "1" is
 placed in the first and second words of the
 fullword-integer array res as a 64-bit inte- ___
 ger, the date in the form "mm-dd-yy" (see
 key=10) is placed in the third and fourth ___
 words of res, the date in the form ___
 "www mmm dd/yy " (see key=21) is placed in ___
 the fifth through eighth words of res, and ___
 the time of day in the form "hh:mm:ss" (see
 key=4) is placed in the ninth and tenth words ___
 of res. ___

 The CPU time and elapsed time are in milli-
 seconds (key=1, 2, and 3) or microseconds (key= ___ ___
 15, 16, and 17) relative to a global arbitrary,
 past origin. The supervisor and problem state
 CPU times are in timer units relative to a
 global arbitrary, past origin. For key=7, 8, ___
 and 9, one timer unit is 1/(256*300) seconds or
 about 13.0 microseconds. For key=18, 19, and ___
 20, one timer unit is 1/4,096,000,000 seconds or
 about 0.244 nanoseconds. Calling TIME with a
 key=0 resets these time origins locally to the ___
 time status at the call on TIME. These time
 origins are local to the program currently
 executing; they do not carry over to another
 separate program execution. TIME must be rein-
 itialized when used with another program
 execution.

 If 1000 is added to the value of a key and the
 result is the current date or time of day
 (key=4-6, 10-14, and 21-23), the result is in ___
 Greenwich mean time (GMT). If the result is not
 based on the current date and time, adding 1000
 to the value of the key will produce the same
 results as the original key value.

 pr is the location of a fullword integer indicating __
 whether the returned quantities are to be placed
 in res or printed or both. The choices are: ___

 0 the values are returned as described above.
 <0 the values are returned and are also printed
 on logical I/O unit SPRINT.
 >0 the values are only printed on logical I/O
 unit SPRINT and are not returned. Thus the
 res argument is not needed. ___

 If pr is 0, the values are returned. __

 res is the location of a fullword integer or vector ___
 or a character string, as appropriate, in which

 TIME 505

 MTS 3: System Subroutine Descriptions

 April 1981

 the results are placed.
 rc4,rc8 (optional) are statement labels to transfer _______
 to if a nonzero return code occurs.

 Values Returned:

 FR0 contains the doubleword, real value in seconds
 (key=1-3, 7-9, 13, 15-20) or minutes (key=14) if ___ ___
 the returned value is numeric.
 FR2 contains the doubleword, real, second value in
 seconds if a second returned value is numeric
 (key=3, 9, 17, 20). ___

 Return Codes:

 0 Successful return.
 4 Error, due to an improper value for key. ___
 8 System error (should not occur).

 Index to key Values: ___

 CPU time 1,3,15,17
 Problem state time 8,9,19,20
 Supervisor state time 7,9,18,20
 Date
 MM-DD-YY 10,11,12,23
 MMM DD, 19YY 5,6
 WWW MMM DD/YY 21,22,23
 Elapsed time 2,3,16,17
 Initialization 0
 March 1, 1900 base 13,14,23
 Time of day 4,6,11,12,22,23

 Examples: Assembly: CALL TIME,(KEY,PR,RES)
 .
 .
 KEY DC F’6’
 PR DC F’0’
 RES DS 5F

 The time of day and date are stored in location RES.

 FORTRAN: CALL TIME(5,1)

 The date is printed on logical I/O unit SPRINT.

 CALL TIME(0)
 ...
 CALL TIME(2,-1,TIM)

 The elapsed time since the call on TIME(0) is printed on
 SPRINT and stored in location TIM.

 506 TIME

 MTS 3: System Subroutine Descriptions

 April 1981

 Time Routines _____________

 Subroutine Description

 The time routines are used to perform time and date conversions
 between MTS internal formats, general character-string formats, and
 "exploded" formats.

 Three subroutines are provided in this package:

 TIMEIN To convert an MTS internal or character-string time and
 date into an exploded format.
 TIMEOUT To convert an exploded time and date into an MTS internal
 or character-string format.
 TIMEGIN To convert a general character-string time and date into
 an exploded format.

 MTS Internal Time and Date Formats __________________________________

 Time and dates can be represented internally in MTS in several
 "standard" formats. These are either 4-byte or 8-byte quantities giving
 the time and date in various units such as microseconds, minutes, or
 days since March 1, 1900.

 The format parameter for the TIMEIN and TIMEOUT subroutines points to ______
 a character string that specifies the particular internal format being
 used. This character string may be:

 MICROSECONDS (or *MMS*)

 The time and date is expressed as an 8-byte field containing the
 number of microseconds that have elapsed since March 1, 1900
 00:00:00.000000.

 MILLISECONDS (or *MS*)

 The time and date is expressed as an 8-byte field containing the
 number of milliseconds that have elapsed since March 1, 1900
 00:00:00.000.

 SECONDS (or *S*)

 The time and date is expressed as a 4-byte field containing the
 number of seconds that have elapsed since March 1, 1900
 00:00:00.

 MINUTES (or *M*)

 The time and date is expressed as a 4-byte field containing the
 number of minutes that have elapsed since March 1, 1900 00:00.

 Time Routines 506.1

 MTS 3: System Subroutine Descriptions

 April 1981

 HOURS (or *H*)

 The time and date is expressed as a 4-byte field containing the
 number of hours that have elapsed since March 1, 1900 00:.

 DAYS (or *D*)

 The time and date is expressed as a 4-byte field containing the
 number of days that have elapsed since March 1, 1900.

 IBM MICROSECONDS (or *IBMMMS*)

 The time and date is expressed as an 8-byte field containing the
 time and date as returned by the STCK instruction in 370-
 assembler language. The STCK instruction returns the number of
 microseconds*4096 that have elapsed since January 1, 1900
 00:00:00.000000 GMT (see the IBM publication, IBM System/370 ______________
 Principles of Operation, form GA22-7000, for details. _______________________

 In all the above forms, except for *IBM MICROSECONDS*, time-zone
 information is not given and for many applications is not needed.
 However, time-zone information can be included by the use of one of the
 following modifiers.

 (1) @GMT specifies that the Julian time/date is based from March 1,
 1900 00:00 GMT.
 (2) @UT is same as above but is followed by a 2-byte field that
 contains the offset (in minutes) of the time zone of the
 time/date from which its Julian representation was computed and
 an 8-byte field, left-justified and padded with blanks, that
 contains the character abbreviation of the original time zone.
 (3) @TAGGED specifies that following the Julian time/date there is
 an 8-byte field, left-justified and padded with blanks, that
 contains the character representation of the time zone in which
 the Julian quantity was computed.
 (4) @TZ=zzz specifies that the Julian time/date is to interpreted as
 being computed for the time zone specified by "zzz" (i.e., "zzz"
 can be EST, CST, EDT, etc.). This modifier is valid only for
 the TIMEIN subroutine.
 (5) @TZ=LOCAL specifies that the Julian time/date is to be inter-
 preted as being computed in the current local time zone. At U
 of M, this would either be EST in winter and EDT in summer.
 This modifier is valid only for the TIMEIN subroutine.

 For example, *MINUTES@GMT* indicates a time/date in GMT. If no modifier
 is specified, the time/date contains no time-zone information and
 therefore cannot be used in a time-zone transformation.

 Note that in all the above forms, the @L=val modifier may be also
 used to change the default lengths of the Julian time/dates. "val" may
 be either 2, 4, or 8 and specifies the length in bytes of the time/date.
 For example, *HOURS@L=8* causes the time/date to be 8 bytes long rather

 506.2 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 than the usual four bytes, and *SECONDS@L=8@GMT* causes the time/date to
 be 8 bytes long and specifies the time is in GMT.

 Character-String Time and Date Formats ______________________________________

 To specify a time and date in a more easily readable character
 format, the conventions covered below are used to describe the different
 formats available. A character-string time and date consists of three
 parts, the time, the date, and the weekday, all of which may or may not
 be present. The fashion in which these components are specified is
 described below.

 The time component of a character-string time and date can be built
 up of the following picture elements.

 (1a) HH is a two-digit hour number.
 H+ is a one- or two-digit hour number.
 (1b) HH.[H...][+...], where HH is a two-digit hour number, [H...]
 represents the number of fractional hour positions that must be
 present, and [+...] represents the additional fractional posi-
 tions that may be present if significant. The nonsignificant
 positions are assumed to be nulls. The number of H’s and +’s
 specified must be greater than or equal to one and less than or
 equal to six.
 H+.[H...][+...] is the same as above but the hour number can be
 one or two digits long.
 (2a) MM is a two-digit minute number.
 M+ is a one- or two-digit minute number.
 (2b) MM.[M...][+...], where MM is a two-digit minute number, [M...]
 represents the number of fractional minute positions that must
 be present, and [+...] represents the additional fractional
 positions that may be present if significant. The nonsignifi-
 cant positions are assumed to be nulls. The number of M’s and
 +’s must be greater than or equal to one and less than or equal
 to six.
 M+.[M...][+...] is the same as above but the minute number can
 be one or two digits long.
 (3a) SS is a two-digit second number.
 S+ is a one- or two-digit second number.
 (3b) SS.[S...][+...], where SS is a two-digit second number, [S...]
 represents the number of fractional second positions that must
 be present, and [+...] represents the additional fractional
 positions that may be present if significant. The positions
 that are not significant are assumed to be nulls. The number of
 S’s and +’s must be greater than or equal to one and less than
 or equal to six.
 S+.[S...][+...] is the same as above but the second number can
 be one or two digits long.
 (4) A is an am/pm meridian marker in the form of "a" or "p".
 AM is an am/pm meridian marker in the form of "am" or "pm".
 A.M. is an am/pm meridian marker in the form of "a.m." or
 "p.m.".

 Time Routines 506.3

 MTS 3: System Subroutine Descriptions

 April 1981

 (5) ZZZ[Z...][+...] is used to specify the presence of a time-zone
 marker. The Z’s represent the number of characters that must be
 present in the time-zone marker and the +’s represents the
 number of characters that may or may not be present in the
 marker. The maximum number of Z’s and +’s that can be used is
 8.

 Thus, a time may be specified by putting together appropriate picture
 elements. A delimiter may occur between picture elements. For time
 elements, the valid delimiters are ":", ".", and blank. The ":" and
 "." delimiters are valid between numeric time picture elements and the
 blank is valid to delimit the time from a meridian marker and/or
 time-zone marker. The delimiter is required after a time picture
 element only if the picture element is of variable length. The
 following is a list of valid combinations of picture elements:

 (a) (1a) optionally with (4) and/or (5). That is, an hour possibly
 followed by a meridian marker and/or time-zone marker, e.g.,

 H+ AM ZZZ which would describe
 6 am EDT
 12 pm EST
 4 PM CST

 HH ZZZ which would describe
 06 EDT
 12 EST
 16 CST

 (b) (1b) optionally with (4) and/or (5). That is, an hour followed
 by fractional hours and possibly followed by a meridian marker
 and/or time-zone marker, e.g.,

 HH.H++ AM ZZZ
 06.5 am EDT
 12.333 PM EST

 (c) (1a) with (2a) and optionally with (4) and/or (5). That is, an
 hour followed by minutes and optionally a meridian marker and/or
 time-zone marker, e.g.,

 H+:MM A which would describe
 10:15 a
 3:30 p

 (d) (1a) with (2b) and optionally with (4) and/or (5). That is, an
 hour followed by minutes and fractional minutes and possibly
 terminating with a meridian marker and/or time-zone marker,
 e.g.,

 HH:MM.MM A.M.
 10:15.25 a.m.
 03:30.50 p.m.

 506.4 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 (e) (1a) with (2a) with (3a) and optionally with (4) and/or (5).
 That is, an hour followed by minutes and seconds that can
 optionally be followed by a meridian marker and/or time-zone
 marker, e.g.,

 H+:MM.SS A.M. ZZZ which would describe
 9:20.00 a.m. EST
 11:30.45 P.M. EST

 HHMMSS which would describe
 092000
 233045

 (f) (1a) with (2a) with (3b) and optionally with (4) and/or (5).
 That is, an hour followed by minutes, seconds, and fractional
 seconds possibly followed by a meridian marker and/or time-zone
 marker, e.g.,

 H+:MM.SS.S++ A.M. ZZZ which would describe
 9:20.00.0 a.m. EST
 11:30.45.25 P.M. EST

 Note that if a meridian marker is not used in specifying a date, a
 24-hour clock is assumed, whereas if one is present, a 12-hour clock is
 used. Also note that the order of the elements in the above list cannot
 be varied.

 In a similar fashion, a date can be made up of picture elements and
 appropriate delimiters, if desired, in two types of date formats.

 The first form is numeric. In this form, the date, except for
 delimiters, is made up entirely of numeric characters. Valid delimiters
 between elements in a numeric date are the "-", "/", and ".". The "-"
 and "/" delimiters are valid in calendar forms (month, day, and year)
 and the "." delimiter is valid in the OS-date forms (year and day of
 year). A delimiter is not required after a numeric date picture unless
 the element is of variable length.

 The second form of the date is the character date. The character
 date has the month element in character format and the day and year
 elements in numeric format. Valid delimiters between elements in a
 character date are " ", ",", and "/". A delimiter is not required after
 a date picture elements unless it is numeric and of variable length.
 With character dates, unlike times and numeric dates, more than one
 delimiter may be used to separate the picture elements.

 The following is a list of valid date picture elements.

 (1a) YYYY is a four-digit year number.
 (1b) YY is the last two digits of the year number.
 (2a) MM is a two-digit month number (valid only in numeric forms of
 the date).
 M+ is a one- or two-digit month number (valid only in numeric

 Time Routines 506.5

 MTS 3: System Subroutine Descriptions

 April 1981

 forms of the date).
 (2b) MMM is a three-letter month abbreviation (valid only in charac-
 ter forms of the date).
 MMMB is a three-letter month abbreviation followed by either a
 blank or "." depending whether if the name of the month
 abbreviated (valid only in character forms of the date).
 MMMN is a three-letter month abbreviation followed by an
 optional "." depending on whether the name of the month was
 abbreviated (valid only in character forms of the date).
 MMM++++++ is a variable-length name of the month which must be
 fully spelled out (valid only in character forms of the date).
 MMMMMMMMM is a nine-character, left-justified, fully spelled out
 month name with trailing blanks in unused positions (valid only
 in character forms of the date).
 (3a) DD is two-digit day of month (valid in all but the OS-date
 form.)
 D+ is a one- or two-digit day of the month (valid in all but the
 OS-date form).
 (3b) DDD is a three-digit day of year number (valid only in OS-date
 form).
 D++ is a one- to three-digit day of year number (valid only in
 OS-date form).

 The following is a list of how the above picture elements can be
 combined to create the various date forms recognized by this subroutine.
 Note that unlike the time forms, the picture elements in a date can be
 specified in any order.

 (a) (1a) with (2a) and (3a); numeric form (month, day, and year),
 e.g.,

 MM/DD/YYYY which would describe
 01/05/1982
 06/30/1983
 12/31/1984

 D+-M+-YYYY which would describe
 5-1-1982
 30-6-1983
 31-12-1984

 (b) (1b) with (2a) and (3a); numeric form (month, day, and year).

 M+-DD-YY
 1-05-82
 6-30-83
 12-31-84

 (c) (1a) with (3b); numeric form (OS date), e.g.,

 YYYY.DDD which would describe
 1982.005

 506.6 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 1983.181
 1984.365

 (d) (1b) with (3b); numeric form (OS date), e.g.,

 YY.D++ which would describe
 82.05
 83.181
 84.365

 (e) (1a) with (2b) and (3a); character form (month, day, and year),
 e.g.,

 MMMB DD, YYYY which would describe
 Jan. 05, 1982
 June 30, 1983
 Dec. 31, 1984

 (f) (1b) with (2b) and (3a); character form (month, day, and year),
 e.g.,

 MMMN DD/YY which would describe
 Jan. 05/82
 June 30/83
 Dec. 31/84

 The final component that can appear in a date is the weekday. The
 following picture elements can be used to specify a weekday.

 (a) WW is a two-letter weekday abbreviation.
 (b) WWW is a three-letter weekday abbreviation.
 (c) WWW++++++ is a variable-length name of weekday fully spelled.
 (d) WWWWWWWWW is a nine-character, left-justified name of weekday
 fully spelled with unused portion padded with blanks.

 A complete time and date consists of the above components combined
 with separators between the components, optionally before the first
 component, and optionally after the last component. Note that although
 separators are not normally required after the last component in a
 time/date, if the last component ends with a variable picture element,
 at least one separator must follow. The separators that may be chosen
 by the user with the stipulation that a component that ends in a
 variable-length element cannot be followed by a separator string whose
 first character is alphanumeric. The separator strings are defined by a
 starting prime (’) or quote ("), followed by an arbitrary string, and
 ending with a prime or quote. Separator strings whose characters are
 not alphanumeric need not be delimited by primes or quotes. The order
 of the components in an external time/date is optional. The following
 is a list of valid components that make up a time/date.

 (1) Time, date, and weekday.
 (2) Time and date.

 Time Routines 506.7

 MTS 3: System Subroutine Descriptions

 April 1981

 (3) Date.
 (4) Time.

 Some examples are as follows:

 (a) WWW., MM-DD-YY HH.HH+’ ’ which would describe
 Tue., 01-05-82 13.25
 THU., 06-30-83 01.625
 Mon., 12-31-84 23.50

 (b) MMMN D+ YYYYHH:MM:SS AM which would describe
 Jan. 5 198201:15:00 PM
 Jun. 30 198301:37:30 AM
 DEC. 31 198423:30:00 PM

 (c) MMMN D+ YYYY" at "HH:MM:SS A.M. which would describe
 Jan. 5 1982 at 01:15:00 P.M.
 Jun. 30 1983 at 01:37:30 A.M.
 DEC 31 1984 at 11:30:00 P.M.

 Any of the above patterns used to specify an external time and date of
 an external form is referred to as a time pattern. Thus, to specify the
 form of an external time and date, format would point to: ______

 time pattern*

 The interpretation of an external time and date can be modified by the
 presence of certain modifiers in the above as displayed below.

 time pattern@mod1@mod2...*

 The possible modifiers for the TIMEIN subroutine are:

 (a) @ARB - The @ARB modifier indicates that delimiters specified in
 the time pattern should not be considered exact. Instead of
 only the delimiters indicated in the time pattern being valid,
 all other legal delimiters in the time/date are also valid.
 (b) @MDATE={CURR|PAST|FUTURE|ZERO} - @MDATE=CURR indicates that the
 date component is partial and fills in the missing parts with
 the current date. @MDATE=PAST fills in missing parts such that
 the resulting date is the nearest date to the current date that
 is before the current date. @MDATE=FUTURE fills in the missing
 parts such that the resulting date is the nearest date to the
 current date that is later than the current date. @MDATE=ZERO
 indicates that the date component is partial and fills in the
 missing components with zeros. If none of these modifiers are
 specified, the @MDATE=FUTURE modifier is assumed.

 The possible modifiers for the TIMEOUT subroutine are:

 (a) @M=UC, @M=LC, @M=UCLC - @M=LC causes character months to be
 returned in lowercase. @M=UC causes character months to be
 returned in uppercase. @M=UCLC causes character months to be

 506.8 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 returned in lowercase except for the first character which is in
 uppercase. If none of these modifiers is present, @M=UCLC is
 defaulted.
 (b) @W=UC, @W=LC, @W=UCLC - @W=LC causes the weekday name to be
 returned in lowercase. @W=UC causes the weekday name to be
 returned in uppercase. @W=UCLC causes the weekday name to be
 returned in lowercase except for the first character which is in
 uppercase. If none of these modifiers are specified, @W=UCLC is
 defaulted.
 (c) @AM=UC or @AM=LC - @AM=LC causes returned meridian markers to be
 lowercase. @AM=UC causes the meridian markers to be returned in
 uppercase. If neither of these modifiers is present, @AM=LC is
 defaulted.

 General Time and Date Formats _____________________________

 The TIMEGIN subroutine can recognize two forms of general time and
 date strings, the absolute time/date string and the relative time/date
 string.

 The absolute time/date string is composed of three substrings - the
 time string, the date string, and the weekday string. An "arbitrary"
 general time/date string consists of one or more of the above three
 components, in any order, along with certain delimiter strings.

 One or more of the following delimiters can occur between the
 substrings of a general time/date string: null, blank, ".", or ",".
 Note however that the null delimiter cannot be used if it would cause
 the juxtaposition of two numeric fields or two character fields when the
 first field is not fully specified. Also note that the "." can be used
 only after alphabetic fields.

 The time string must be one of the following forms.

 (a) HH:MM:SS.SSSSSS am|pm|a.m.|p.m. ZZZ
 (for our American friends)
 (b) HH:MM.SS.SSSSSS am|pm|a.m.|p.m. ZZZ
 (for our Canadian friends)
 (c) HH.MM.SS.SSSSSS am|pm|a.m.|p.m. ZZZ
 (for our British friends)

 In the above time strings, all character components are recognized in
 either upper-, lower-, or mixed case. The hour, minute, and second
 fields can have their leading zeros omitted. The order in which
 components of a time appear must be in the above order, however all
 fields need not be specified. If no meridian marker is used with the
 time, the time string will be interpreted as a 24-hour clock; otherwise,
 it will be interpreted as a 12-hour clock. If only an hour field is
 entered without a meridian and/or time-zone marker, the ":" must appear
 after hour. Normally, all fields not specified in the input will be set
 to zero in the exploded form.

 Time Routines 506.9

 MTS 3: System Subroutine Descriptions

 April 1981

 TIMEGIN can process two types of date strings - numeric-date strings
 and character-date strings. Numeric-date strings must be in one the
 forms and normally in the order specified below:

 MM-DD-YYYY
 MM/DD/YYYY

 Character-date strings must be in the following form (but not necessari-
 ly in the order specified):

 monthXDDXYYYY

 where "X" stands for one or more of the following delimiters: null,
 blank, ".", or ",". Note that the null delimiter cannot be used after a
 numeric field that is partially specified when the following field is
 also numeric. Note also that the "." can only be used immediately
 after a month field. In either type of date string, MM and DD are
 numeric characters with optional leading zeros, the month is a character
 string consisting of at least three initial characters of a month name
 in upper-, lower-, or mixed case, and YYYY are numeric characters with
 optional leading zeros. Normally, if the YYYY portion of a date string
 is only two characters long, it is interpreted as specifying a year in
 the "current century". Under normal circumstances not all the com-
 ponents of a date string need be specified. If components of a date are
 missing, they are normally replaced in the exploded format by corre-
 sponding components of the "current date".

 The weekday string must consist of at least the first two initial
 characters of a weekday name. The characters of a weekday name can be
 in upper-, lower-, or mixed case.

 A relative time string can be specified by any of the following
 strings:

 NOW
 nn.nn YEAR[S]
 nn.nn MONTH[S]
 nn.nn WEEK[S]
 nn.nn DAY[S]
 nn.nn HOUR[S]
 nn.nn MINUTE[S]
 nn.nn SECOND[S]

 The "nn.nn" in the above can be preceded by an optional "+" or "-" and
 the trailing blank can be omitted. This form of input creates a date in
 exploded format by adding or subtracting the appropriate quantity from
 the "current date".

 Exploded Time and Date Formats ______________________________

 Exploded time and date formats are presented in a 12-fullword vector
 expressed as follows:

 506.10 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 FW1 - contains a the characters ’GREG’.
 FW2 - contains the Gregorian year as fullword integer.
 FW3 - contains the month of the year as a fullword integer.
 FW4 - contains the day of the month as a fullword integer.
 FW5 - contains the hour of the day (24-hour clock) as a fullword
 integer.
 FW6 - contains the minute as a fullword integer.
 FW7 - contains the second as a fullword integer.
 FW8 - contains the microsecond as a fullword integer.
 FW9 - contains the weekday as a fullword integer.
 0 - No weekday is associated with this date.
 1...7 - Sunday, ..., Saturday.
 FW10 - contains the time offset (in minutes) from GMT, or zero if no
 time zone was used.
 FW11 and FW12 - contain the characters of the time-zone marker,
 left-justified and padded with blanks, or just blanks if no
 time-zone marker was specified.

 If the time pattern specifies that only a date is being inputted, the
 time fields in the exploded format will be zeroed. If the time
 pattern specifies that only a time is being inputted, the date fields
 and the weekday field will be zeroed.

 Examples ________

 The following program, given both in 370-assember and FORTRAN,
 illustrates the used of the time routines. The 370-assembler version is
 as follows:

 TIMETST CSECT
 REQU TYPE=DEC
 PRINT NOGEN
 ENTER R12,SA=SAVE
 DO
 CALL READ,(TIME,TIMLEN,MOD,LNR,UNIT5)
 EXITDO R15,NZ
 CALL TIMEGIN,(TIME,TIMLEN#,ZERO,TIMEOT,ZERO,LENGTH#),VL
 IF R15,EQ,=F’8’
 CALL WRITE,(E_MSG,E_MSGL,MOD,LNR,UNIT6)
 REDO
 ELSEIF R15,NZ
 CALL WRITE,(W_MSG,W_MSGL,MOD,LNR,UNIT6)
 ENDIF
 L R1,LENGTH#
 CVD R1,NUM
 OI NUM+7,X’0F’
 UNPK L_MSG+L’L_MSG(3),NUM+6(2)
 CALL WRITE,(L_MSG,L_MSGL,MOD,LNR,UNIT6)
 CALL TIMEOUT,(TIMEOT,OUTFORM,TIME2,LENGTH#),VL
 CALL WRITE,(TIME2,LENGTH,MOD,LNR,UNIT6)
 ENDDO
 EXIT 0

 Time Routines 506.11

 MTS 3: System Subroutine Descriptions

 April 1981

 LTORG
 SAVE DS 18F
 UNIT6 DC F’6’
 UNIT5 DC F’5’
 LENGTH# DC F’0’
 ORG LENGTH#+2
 LENGTH DS H
 MOD DC F’0’
 LNR DC F’0’
 NUM DS D
 ZERO DC F’0’
 TIMLEN# DC F’0’
 ORG TIMLEN#+2
 TIMLEN DS H
 TIME DS CL80
 TIME2 DS CL80
 TIMEOT DS 12F
 OUTFORM DC C’WWW DD/YY MMMB HH:MM:SS AM ZZZ*’
 E_MSG DC C’0Input time is invalid.’
 W_MSG DC C’0Time interpretation may be suspect.’
 L_MSG DC C’0Number of characters in time used is ’
 DC CL4’ .’
 E_MSGL DC AL2(L’E_MSG)
 W_MSGL DC AL2(L’W_MSG)
 L_MSGL DC AL2(L’L_MSG+4)
 END

 The FORTRAN version is as follows:

 LOGICAL*1 TIME(80),TIME2(80),OUTFOR(80)
 DIMENSION TIMEOT(12)
 DATA OUTFOR/’WWW DD/YY MMMB HH:MM:SS AM ZZZ*’/,IZERO/0/
 10 READ (5,1001,END=60) (TIME(I),I=1,80)
 CALL TIMGIN(TIME,I,IZERO,TIMEOT,IZERO,LEN,&40,&50)
 WRITE(6,1000) LEN
 1000 FORMAT (’0Number of characters in time used is ’,I2)
 30 CALL TIMOUT(TIMEOT,OUTFOR,TIME2,LEN)
 WRITE (6,1003) (TIME2(N),N=1,LEN)
 1001 FORMAT (80A1)
 1003 FORMAT (’ ’,80A1)
 GO TO 10
 40 WRITE(6,1004)
 1004 FORMAT (’0Time interpretion may be suspect’)
 GO TO 30
 50 WRITE(6,1005)
 1005 FORMAT (’0Input time is invalid.’)
 GO TO 10
 60 STOP
 END

 506.12 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 If the following program input is processed by the program

 dec 3
 12/3/82
 jan 8 16: pm
 jan 9 3:pm pst
 feb 21
 jan 3 16: jiberish
 wed feb 25
 fri feb 25 3 pm pdt

 the following program output will be generated.

 Number of characters in time used is 80
 Mon 03/84 Dec. 12:00:00 am

 Number of characters in time used is 80
 Fri 03/82 Dec. 12:00:00 am

 Input time is invalid.

 Number of characters in time used is 80
 Mon 09/84 Jan. 03:00:00 pm PST

 Number of characters in time used is 80
 Tue 21/84 Feb. 12:00:00 am

 Number of characters in time used is 10
 Tue 03/84 Jan. 04:00:00 pm

 Time interpretion may be suspect
 Sat 25/84 Feb. 12:00:00 am

 Time interpretion may be suspect
 Sat 25/84 Feb. 03:00:00 pm PDT

 Time Routines 506.13

 MTS 3: System Subroutine Descriptions

 April 1981

 TIMEIN ______

 Purpose: To convert an MTS internal or a character-string time and
 date into an exploded format.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL TIMEIN,(format,tdinp,tdout,optns,errmsg),VL

 FORTRAN: CALL TIMEIN(format,tdinp,tdout,optns,errmsg,
 &rc4,&rc8)

 Parameters:

 format points to a character string describing the ______
 format of the time and date being used as
 input. This specifies whether tdinp contains _____
 a 4-byte or 8-byte internal time and date, or
 a character-string time and date that corre-
 sponds to time and date picture
 specification.

 If tdinp is an internal time and date, format _____ ______
 may be

 (a) *MICROSECONDS* (or *MMS*)
 (b) *MILLISECONDS* (or *MS*)
 (c) *SECONDS* (or *S*)
 (d) *MINUTES* (or *M*)
 (e) *HOURS* (or *H*)
 (f) *DAYS* (or *D*)
 (g) *IBM MICROSECONDS* (or *IBMMMS*)

 All the above forms and the modifiers that
 may be appended are described in the preface
 to this subroutine description. In addition,
 the following two formats may also be
 specified.

 (h) *EXPLODED* (or *X*)

 tdinp points to a 12-fullword exploded _____
 time vector.

 (i) *NOW*

 tdinp is not used; instead, the current _____
 time and date is used.

 506.14 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 If tdinp is a character-string time and date, _____
 format must be a picture specification as ______
 described above in the preface.
 tdinp points to the time and date to be converted _____
 into the exploded format.
 tdout points to a 12-fullword vector that is to _____
 contain the exploded time. The format of
 this vector is described in the introduction
 above.
 optns If the optns pointer is zero, points to a _____ _____
 fullword zero, or is not present, the trans-
 formation as described above is carried out.
 Otherwise, optns points to a character string _____
 that is used to modify the standard transfor-
 mation. The form of this string is displayed
 below.

 @mod1@mod2...*

 where the possible modifiers are from the
 following list.

 (a) @TZ=zzz - This modifier causes all time/
 dates that were entered without time-zone
 information to use the specified time
 zone "zzz" to fill in the last three
 fullwords in the resultant exploded for-
 mat. If time-zone information was in-
 cluded in the input, the resultant
 exploded format will be transformed to
 the time zone specified by "zzz".
 (b) @TZ=LOCAL - This works the same as above
 except that the current time zone will be
 used instead of a specified time zone.
 At U of M this will be either EST or EDT.
 (c) @ROUND=val, @CEIL=val, or @TRUNC=val -
 @ROUND causes the resultant exploded for-
 mat to be rounded to the specified unit,
 @TRUNC causes the resultant exploded for-
 mat to be truncated to the specified
 unit, and @CEIL causes the resultant
 exploded format to be truncated to the
 specified unit and then incremented by
 one if the truncated unit is not zero.
 For any of the above modifiers, the
 unwanted fields are zeroed after the
 operation. The "val" portion of the
 modifier specifies the unit at which the
 action is to take place. Valid values
 for "val" are YEAR, MONTH, DAY, HOUR,
 MINUTE, SECOND, and MILLISECOND. If none
 of these modifiers are present, the re-

 Time Routines 506.15

 MTS 3: System Subroutine Descriptions

 April 1981

 sulting exploded format will be expressed
 to the nearest microsecond.

 errmsg If errmsg is zero or omitted, no extended ______ ______
 error information is returned. Otherwise,
 errmsg points to a 76-fullword vector. The ______
 first word of the vector contains the error
 code, the second word contains the length of
 the associated error message, and the
 remainder contains the error message padded
 with blanks.
 &rc4,&rc8 (optional) are statement labels to transfer _________
 to if a nonzero return code occurs.

 Return codes:

 0 Successful conversion.
 4 Conversion completed but might not be what the
 caller had in mind (see errmsg above). ______
 8 Conversion not performed (see errmsg above). ______

 506.16 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 TIMEOUT _______

 Purpose: To convert an exploded time and date into an MTS internal
 or a character-string format.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL TIMEOUT,(tdinp,format,tdout,len,errmsg),VL

 FORTRAN: CALL TIMOUT(tdinp,format,tdout,len,errmsg,&rc4,
 &rc8)

 Parameters:

 tdinp points to the 12-fullword vector that con- _____
 tains the exploded time and date to be
 converted.
 format points to a character string describing the ______
 format of the time and date being produced as
 output. This specifies whether tdout con- _____
 tains a 4-byte or 8-byte internal time and
 date, or a character-string time and date
 that corresponds to time and date picture
 specification.

 If tdout is an internal time and date, format _____ ______
 may be

 (a) *MICROSECONDS* (or *MMS*)
 (b) *MILLISECONDS* (or *MS*)
 (c) *SECONDS* (or *S*)
 (d) *MINUTES* (or *M*)
 (e) *HOURS* (or *H*)
 (f) *DAYS* (or *D*)

 All the above forms and the modifiers that
 may be appended are described in the preface
 to this subroutine description. If tdout is _____
 a character-string time and date, format must ______
 be a picture specification as described above
 in the preface.
 tdout points to the output region that will contain _____
 the converted time and date.
 len points to a fullword that contains the length ___
 of the returned time and date. If len is ___
 zero or omitted, no time and date will be
 returned.
 errmsg If the errmsg pointer is zero or omitted, no ______ ______

 Time Routines 506.17

 MTS 3: System Subroutine Descriptions

 April 1981

 extended error information is returned.
 Otherwise, errmsg points to a 76-fullword ______
 vector. The first word of the vector con-
 tains the error code, the second word con-
 tains the length of the associated error
 message, and the remainder contains the error
 message padded with blanks.
 &rc4,&rc8 (optional) are statement labels to transfer _________
 to if a nonzero return code occurs.

 Return codes:

 0 Successful conversion.
 4 Conversion completed but might not be what the
 caller had in mind (see errmsg above). ______
 8 Conversion not performed (see errmsg above). ______

 506.18 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 TIMEGIN _______

 Purpose: To convert a "general" time and date into an exploded
 format.

 Location: Resident System

 Alt. Entry: TIMGIN

 Assembly: CALL TIMEGIN,(tdinp,tdlen,tdopt,tdout,optns,len,
 tdcurr,status,errmsg),VL

 FORTRAN: CALL TIMGIN(tdinp,tdlen,tdopt,tdout,optns,len,
 tdcurr,status,errmsg,&rc4,&rc8)

 Parameters:

 tdinp points to a general time and date string (see _____
 the introduction above for a description of
 this form of time and date).
 tdlen points to a fullword containing the length of _____
 the string containing the general time and
 date. The subroutine will use as much of the
 string as necessary to create a time/date or
 until a element is reached that cannot be
 deciphered as a time/date element (see also
 the @ZCB and @DS modifiers below). The
 actual length used may be returned by the len ___
 parameter.
 tdopt If this pointer is zero or points to a _____
 fullword zero, the conversion as outlined
 above is performed. Otherwise, tdopt points _____
 to a string that modifies the interpretation
 of the input string. The form of this string
 is

 @mod1@mod2...*

 where the "@mod1@mod2..." are from the fol-
 lowing list.

 (a) @TR1, @TR2, @TR3 - These modifiers speci-
 fy the time range over which the sub-
 routine is valid. The default modifier
 @TR1 specifies a time range from January
 1 of the 32nd year of the "current
 century" to the end of the "current
 century". The @TR2 modifier specifies a
 time range from the beginning of the
 "current century" to the end of the

 Time Routines 506.19

 MTS 3: System Subroutine Descriptions

 April 1981

 "current century". This time range can
 lead to ambiguity when a date such as Jan
 28 or 28 Jan is specified since it can be
 interpreted as January 28 of the "current
 year" or as January of the 28th year of
 the "current century". In this case, the
 date will be interpreted in the first
 sense and a return code of 4 will be
 issued. The @TR3 modifier specifies a
 time range from January 1 of the year 0
 to December 31, 9999. If this time range
 option is specified, then all years must
 be expressed exactly. Note that TR is an
 abbreviation for TIME RANGE which may be
 used instead of TR (i.e., @TR1 is equiva-
 lent to @TIME RANGE1.)
 (b) @ND=MDY, @ND=DMY, or @ND=YMD - The @ND=
 MDY modifier (the default) specifies that
 numeric-date strings are to be inter-
 preted in the order month, day, year.
 The @ND=DMY modifier specifies that
 numeric-date strings are to be inter-
 preted in the order day, month, year.
 The @ND=YMD modifier specifies that
 numeric-date strings are to be inter-
 preted in the order year, month, day.
 Note that ND is an abbreviation for
 NUMERIC DATE FORM which may be be used
 instead of ND.
 (c) @MT=ZERO, @MT=CURR, MT=HIGH - The @MT=
 ZERO modifier (the default) specifies
 that missing time components in the input
 time/date are to be set to zero in the
 output exploded format. The @MT=CURR
 modifier specifies that missing time com-
 ponents in the input time/date are to be
 set to the corresponding components of
 the "current time" in the output exploded
 format. The @MT=HIGH modifier specifies
 that missing time components in the input
 time/date are to be set to the highest
 value they can obtain in the output
 exploded format. Note that MT is an
 abbreviation for MISSING TIME DEFAULT
 which which may be used instead of MT.
 (d) @MDATE=CURR, @MDATE=ZERO,
 @MDATE=FIRST(CURR|PAST|FUTURE),
 @MDATE=LAST(CURR|PAST|FUTURE),
 @MDATE=PAST, or @MDATE=FUTURE

 @MDATE=CURR (the default) specifies that
 missing date components are to be filled
 in with corresponding components of the

 506.20 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 "current date" or, if a weekday component
 appears without a date component in the
 input time/date, the date components of
 the resulting exploded format are to be
 set to the components of the date closest
 to the "current date" that falls on the
 specified weekday.

 The @MDATE=ZERO modifier specifies that
 missing components of the date string are
 to be replaced by zeros in the resulting
 exploded format.

 The @MDATE=FIRST(CURR) modifier specifies
 that if, on input, a month component
 appears but no day component is speci-
 fied, the day field of the resulting
 exploded format will be set to the first
 of the month. If the year component is
 also missing, it will be set to the
 "current year". If no month or day
 components are specified on input, the
 resulting exploded format will contain
 the first day of the "current month".
 (If the year component is also missing,
 it will be set to the "current year".)
 In either of the above cases, if a
 weekday component is specified on input,
 the day field will be set to the first
 occurrence of the specified weekday in
 the appropriate month. In all other
 cases, the @MDATE=FIRST(CURR) modifier
 will act the same as the @MDATE=CURR
 modifier.

 The @MDATE=FIRST(PAST) specifies that if,
 on input, a month component appears with-
 out a day component, the resulting
 exploded format will contain the first
 day of the specified month. If the year
 component is also missing on input, the
 year in the resulting exploded format
 will contain the "current year" if the
 resulting date would not be in the
 future; otherwise the year in the result-
 ing exploded format will contain the year
 before the "current year". If the input
 time/date is missing both the month and
 day components, the resulting exploded
 format will contain the first day of the
 "current month". If the year component
 is also missing on input, the resulting
 exploded format will contain the "current

 Time Routines 506.21

 MTS 3: System Subroutine Descriptions

 April 1981

 year". In either of the above cases, if
 a weekday component is also specified on
 input, the day field in the resulting
 exploded format will be set to the first
 occurrence of the specified weekday in
 the appropriate month. In all other
 cases, the @MDATE=FIRST(PAST) will act
 like the @MDATE=PAST modifier.

 The @MDATE=FIRST(FUTURE) specifies that
 if, on input, a month component appears
 without a day component, the resulting
 exploded format will contain the first
 day of the specified month. If the year
 component is also missing on input, the
 year in the resulting exploded format
 will contain the "current year" if the
 resulting date would not be in the past;
 otherwise the year in the resulting
 exploded format will contain the year
 after the "current year". If the input
 time/date is missing both the month and
 day components, the resulting exploded
 format will contain the first day of the
 "current month". If the year component
 is also missing on input, the resulting
 exploded format will contain the "current
 year". In either of the above cases, if
 a weekday component is also specified on
 input, the day field in the resulting
 exploded format will be set to the first
 occurrence of the specified weekday in
 the appropriate month. In all other
 cases, the @MDATE=FIRST(FUTURE) modifier
 acts like the @MDATE=FUTURE modifier.

 The MDATE=LAST(CURR) modifier specifies
 that if, on input, a month component
 appears but no day component is speci-
 fied, the day field of the resulting
 exploded format will be set to the last
 of the month. If the year component is
 also missing, it will be set to the
 "current year". If no month or day
 components are specified on input, the
 resulting exploded format will contain
 the last day of the "current month". If
 the year component is also missing, it
 will be set to the "current year". In
 either of the above cases, if a weekday
 component is specified on input, the day
 field will be set to the last occurrence
 of the specified weekday of the appropri-

 506.22 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 ate month. In all other cases, the
 @MDATE=LAST(CURR) modifier will act the
 same as the @MDATE=CURR modifier.

 The @MDATE=LAST(PAST) specifies that if,
 on input, a month component appears with-
 out a day component, the resulting
 exploded format will contain the last day
 of the specified month. If the year
 component is also missing on input, the
 year in the resulting exploded format
 will contain the "current year" if the
 resulting date would not be in the
 future; otherwise the year in the result-
 ing exploded format will contain the year
 before the "current year". If the input
 time/date is missing both the month and
 day components, the resulting exploded
 format will contain the last day of the
 "current month". If the year component
 is also missing on input, the resulting
 exploded format will contain the "current
 year". In either of the above cases if a
 weekday component is also specified on
 input, the day field in the resulting
 exploded format will be set to the last
 occurrence of the specified weekday in
 the appropriate month. In all other
 cases, the @MDATE=LAST(PAST) will act
 like the @MDATE=PAST modifier.

 The @MDATE=LAST(FUTURE) specifies that
 if, on input, a month component appears
 without a day component, the resulting
 exploded format will contain the last day
 of the specified month. If the year
 component is also missing on input, the
 year in the resulting exploded format
 will contain the "current year" if the
 resulting date would not be in the past;
 otherwise the year in the resulting
 exploded format will contain the year
 after the "current year". If the input
 time/date is missing both the month and
 day components, the resulting exploded
 format will contain the last day of the
 "current month". If the year component
 is also missing on input, the resulting
 exploded format will contain the "current
 year". In either of the above cases, if
 a weekday component is also specified on
 input, the day field in the resulting
 exploded format will be set to the last

 Time Routines 506.23

 MTS 3: System Subroutine Descriptions

 April 1981

 occurrence of the specified weekday in
 the appropriate month. In all other
 cases, the @MDATE=LAST(FUTURE) modifier
 acts the same as the @MDATE=FUTURE
 modifier.

 The @MDATE=PAST modifier specifies that
 if, on input, components of the date are
 missing, the missing components will be
 replaced in the resulting exploded format
 by components of a generated date that is
 the closest possible date to the "current
 date" that can be constructed from the
 missing components that is less that the
 "current date". In the case that a
 weekday sting is specified in the input
 time/date string and the date string is
 missing, the date fields in the resulting
 date will be set to the date of specified
 weekday before the "current date".

 The @MDATE=FUTURE modifier specifies that
 if, on input, components of the date are
 missing, the missing components will be
 replaced in the resulting exploded format
 by components of a generated date that is
 the closest possible date to the "current
 date" that can be constructed from the
 missing components of a time/date that is
 greater that the "current date". In the
 case that a weekday sting is specified in
 the input time/date string and the date
 string is missing, the date fields in the
 resulting date will be set to the date of
 specified weekday after the "current
 date".

 Note that MDATE is an abbreviation for
 MISSING DATE DEFAULT which may be used
 instead of MDATE.

 (e) @LI=AR, @LI=A, or @LI=R - The @LI=AR
 modifier (the default) specifies that
 absolute time/dates and relative time/
 dates are legal input to this subroutine.
 The @LI=A modifier specifies that only
 absolute time/dates are legal input. The
 @LI=R modifier specifies that only rela-
 tive time/dates are legal input. Note
 that LI is an abbreviation for LEGAL
 INPUT which may be used instead of LI.
 (f) @ZCB=YES or @ZCB=NO - These modifiers
 specify whether the subroutine is to

 506.24 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 handle zero-level commas and blanks.
 @ZCB=YES (the default) allows zero-level
 commas and blanks while @ZCB=NO does not.
 If ZCB=NO is specified, the first zero-
 level comma or blank will terminate the
 input string. Note that ZCB is an abbre-
 viation for ZERO LEVEL COMMAS AND BLANKS
 which may be used instead of ZCB.
 (g) @DS=NO or @DS=YES - These modifiers spec-
 ify whether the subroutine should accept
 input time/date strings delimited by
 "...", ’...’, or (...). The default is
 DS=NO. If DS=YES is specified, the input
 string may or may not be so delimited; if
 it is not delimited, then terminating of
 input on commas and blanks depends on the
 setting of the ZCB modifier. If DS=YES
 is specified and the string is delimited,
 input is terminated by the trailing
 delimiter (since any internal commas and
 blanks are not zero-level). Note that DS
 is an abbreviation for DELIMITED STRING
 which may be used instead of DS.

 tdout points to a 12-fullword area in which the _____
 resulting exploded form of the time/date is
 to be placed.
 optns If this parameter is zero, optns points to a _____ _____
 fullword zero. If this parameter is omitted,
 no modifications are made to the exploded
 time/date. Otherwise this parameter points
 to a string specifying how the resulting
 exploded format is to be modified. The form
 of this string is as follows:

 @mod1@mod2...*

 The valid modifiers are as follows.

 (a) @TZ=ZZZ - The presence of this modifier
 causes all time/dates that were entered
 without time-zone information to use the
 specified time zone (ZZZ) to fill in the
 last three fullwords in the resultant
 exploded format. If time-zone informa-
 tion was included in the input, the
 resultant exploded format will be trans-
 formed to the time zone specified by ZZZ.
 (b) @TZ=LOCAL - This modifier the same as
 above except that the current time zone
 will be used instead of a specified time
 zone. At U of M, this will be either EST
 or EDT.

 Time Routines 506.25

 MTS 3: System Subroutine Descriptions

 April 1981

 (c) @ROUND=val, @CEIL=val, or @TRUNC=val -
 The @ROUND modifier causes the resultant
 exploded format to be rounded to the
 specified unit. The @TRUNC modifier
 causes the resultant exploded format to
 be truncated to the specified unit. The
 @CEIL modifier causes the resultant
 exploded format to be truncated to the
 specified unit and then incremented by
 one if the truncated unit is not zero.
 For any of the above modifiers, the
 unwanted fields are zeroed after the
 operation. The "val" portion of the
 modifier specifies at which unit the
 action is to take place. Valid values
 for "val" are YEAR, MONTH, DAY, HOUR,
 MINUTE, SECOND, or MILLISECOND.

 len If this parameter is zero or is omitted, no ___
 length is returned. Otherwise this parameter
 points to a fullword that will return the
 actual length of general time/date extracted
 from the input string, that is, the actual
 length of the string used to create the
 resulting exploded form.
 tdcurr If this parameter is zero, points to a ______
 fullword zero, or is omitted, the "current
 date", "current time", "current year", etc.
 will be determined by actual time of call.
 Otherwise this parameter points to a
 9-fullword vector containing a time and date
 in exploded format to be used as the "current
 time", "current date", "current year", etc.
 status If this parameter is zero or is omitted, no ______
 status information is returned. Otherwise
 this parameter points to a fullword contain-
 ing a series of switches indicating the
 status of the conversion, if successful. The
 possible switches that can be set are as
 follows:

 F’1’ - Input string was a relative time
 F’2’ - Input string was a absolute time
 F’4’ - Year was defaulted
 F’8’ - Month was defaulted
 F’16’ - Day was defaulted
 F’32’ - Hour was defaulted
 F’64’ - Minute was defaulted
 F’128’ - Second was defaulted
 F’256’ - Microsecond was defaulted
 F’512’ - Weekday was defaulted

 506.26 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 errmsg If this parameter is zero or is omitted, no ______
 extended error information is returned.
 Otherwise this points to a 76-fullword vec-
 tor. The first word of the vector contains
 the error code, the second word contains the
 length of the associated error message, and
 the rest of vector contains the error message
 padded with blanks.
 &rc4,&rc8 (optional) are statement labels to transfer _________
 to if a nonzero return code occurs.

 Return codes:

 0 Successful conversion in all probability.
 4 Conversion completed but might not be what the
 caller had in mind (see errmsg). ______
 8 Conversion not performed (see errmsg). ______

 Time Routines 506.27

 MTS 3: System Subroutine Descriptions

 April 1981

 506.28 Time Routines

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 TIMNTRP _______

 Subroutine Description

 Purpose: To enable, disable, or return from timer interrupts set by
 the SETIME subroutine.

| Alt. Entries: TIMTRP, TIMNTRPS, TIMTPS

 Calling Sequences:

 Assembly: LM 0,1,=A(exit,region)
 CALL TIMNTRP

| CALL TIMNTRPS,(exit,region),VL
|
| FORTRAN: CALL TIMTPS(exit,region,&rc4)

 Parameters:

| exit (GR0) should be zero or the location of the ____
| exit routine transfer control to when a timer
| interrupt occurs.
| region (GR1) should should contain the location of a ______
| 72-byte save region for storing pertinent
| information.
| &rc4 (optional) is the statement label to transfer ____
| to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.
| 4 Illegal parameter or no VL bit specified.

 Description: A call on the TIMNTRP subroutine sets up an exit for one
 timer interrupt only. The calling sequence specifies the
 location of an exit routine to transfer control to when
 the next timer interrupt occurs and an exit region for
 storing information. The timer interrupts themselves are
 set up by calls to the SETIME subroutine.

 TIMNTRP may be called several times with different exit
 regions and different exit routines specified. Each call
 on SETIME must also specify the exit region to be used
 when the interrupt occurs. This "subsetting" capability
 allows separate parts of large programs to use the timer
 interrupt facility independently.

 If GR0 is zero, timer interrupt exits for the specified
 exit region are disabled. If, when a timer interrupt

 TIMNTRP 507

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 occurs, its exit is disabled, the interrupt will remain
 pending until the next call on TIMNTRP which enables the
 exit, and the exit will be taken immediately following the
 call.

 When a timer interrupt exit is taken, the exit is
 disabled, so that further timer interrupts which specify
 this exit region will remain pending while the current one
 is being processed. The exit is taken in the form of a
 subroutine call (BALR 14,15 with a GR13 save area provid-
 ed). At the time of this call, GR1 will point to the exit
 region, whose contents will be

 Word 1: the identifier passed to SETIME when the
 interrupt was set up.
 Words 2-3: the PSW at the time of the interrupt.
 Words 4-19: GR0-GR15 (in that order) at the time of
 the interrupt.

 The contents of GR0 and GR2 to GR12 are unpredictable.

 If the exit routine returns to MTS (BR 14), the user’s
 program will be restarted at the point of the interrupt.
 The PSW stored in the savearea is always in BC mode (bit
 12 is zero). The exit will be reenabled if the return
 code in GR15 is zero; otherwise, the exit will remain
 disabled until another call on TIMNTRP. The registers
 must be restored in the standard fashion when the exit
 routine returns.

 For further details, see also the GETIME, RSTIME, and
 SETIME subroutine descriptions.

| A call on the TIMNTRPS or TIMTPS subroutines takes the
| S-type parameters and loads them into an R-type call on
| the TIMNTRP subroutine.

 Example: Assembly: LM 0,1,=A(EXIT,REG)
 CALL TIMNTRP
 ...
 SR 0,0
 LA 1,REG
 CALL TIMNTRP
 .
 . critical section
 .
 LM 0,1,=A(EXIT,REG)
 CALL TIMNTRP
 ...
 USING EXIT,15
 EXIT STM 14,12,12(13)
 .
 . process interrupt

 508 TIMNTRP

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 .
 LM 14,12,12(13)
 SR 15,15
 BR 14
 REG DS 19F

 In this example, a timer interrupt exit is enabled, some
 computing is done, it is disabled as the program enters a
 critical section, and it is then reenabled. The exit
 routine saves the registers, processes the interrupt,
 restores the registers, and returns, reenabling the exit.

 TIMNTRP 508.01

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 508.02 TIMNTRP

 MTS 3: System Subroutine Descriptions

 April 1981

 TOUCH _____

 Subroutine Description

 Purpose: To update the last data-change time for a file.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL TOUCH,(what,info,ercode,errmsg),VL

 FORTRAN: CALL TOUCH(what,info,ercode,errmsg,&rc4)

 Parameters:

 what is the location of either: ____
 (a) a file name with trailing blank (if
 info=0), ____
 (b) a fullword-integer FDUB-pointer (such as
 returned by GETFD) (if info=1), ____
 (c) a fullword-integer logical I/O unit num-
 ber (0 through 99) (if info=1), or ____
 (d) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS) (if info=1).
 info is the location of a fullword integer which ____
 specifies the kind of what parameter ____
 supplied.
 ercode (optional) is the location of a fullword in ______
 which the TOUCH subroutine will place an
 error number if an error return (return code
 4) is made. If this parameter is omitted,
 then the errmsg parameter must also be ______
 omitted.

 Assembly language users who wish to omit this
 parameter should either follow the variable
 parameter list convention (high-order bit of
 the previous parameter’s adcon in the parame-
 ter list should be 1) or else supply an adcon
 which is zero (rather than pointing to a
 zero).

 Error numbers less than 100 indicate some-
 thing was wrong with either the mechanics of
 the subroutine call or the values of the
 parameters:

 TOUCH 508.1

 MTS 3: System Subroutine Descriptions

 April 1981

 Number Message ______ _______

 1 Illegal parameter list pointer
 2 Illegal "what" parameter address
 5 Illegal "info" parameter address
 6 "Info" parameter value not 0 or 1

 Error numbers between 100 and 105 describe
 errors that occur in accessing the file.

 101 Illegal file name
 102 File not found - file "xxxx"
 103 Access not allowed to file "xxxx"
 (Write access required to update the
 last data-chage time).
 104 Deadlock situation, try later - file
 "xxxx"
 105 Interrupted out of wait for locked
 file "xxxx"

 Error numbers 201 and above indicate a file
 system error.

 If a wait to lock is interrupted by an
 attention interrupt, control passes to MTS
 unless the user program has established an
 attention interrupt exit (by calling the
 ATTNTRP subroutine). Following a $RESTART
 command or a return to the point of interrup-
 tion from the attention exit, a return is
 made from TOUCH with an error code of 105.

 errmsg (optional) is the location of a 20-fullword ______
 (80-character) region in which the TOUCH
 subroutine will place the corresponding error
 message if an error return (return code 4) is
 made. Assembly language users should see
 instructions above on omitting optional pa-
 rameters for the ercode parameter. ______
 rc4 is the statement label to transfer to if the ___
 corresponding return code occurs.

 Return Codes:

 0 The last data-change time has been set to the
 current time.
 4 Error. The last data-change time has not been
 set. See the ercode and errmsg values returned ______ ______
 for the specific error.

 508.2 TOUCH

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL TOUCH,(WHAT,INFO,ERCODE,ERRMSG)
 .
 .
 WHAT DC C’PROGRAM ’
 INFO DC F’0’
 ERCODE DS F
 ERRMSG DS CL80

 FORTRAN: CALL TOUCH(’PROGRAM ’,0)

 The above examples set the last data-change time for the
 file PROGRAM to the current time.

 TOUCH 508.3

 MTS 3: System Subroutine Descriptions

 April 1981

 508.4 TOUCH

 MTS 3: System Subroutine Descriptions

 April 1981

 Translation Routines ____________________

 Subroutine Description

 Purpose: To allow convenient access to the standard MTS translation
 tables from a FORTRAN program.

 Location: Resident System

 Calling Sequences:

 FORTRAN: CALL TASEB(buffer,length)
 CALL TEBAS(buffer,length)
 CALL TLCUC(buffer,length)
 CALL TUCLC(buffer,length)
 CALL TIASEB(buffer,length)
 CALL TIEBAS(buffer,length)

 Parameters:

 buffer is the location of the characters to be ______
 translated.
 length is the location of the number of characters ______
 to be translated. This should be declared
 INTEGER*4.

 Description: The translation subroutines translate a buffer of charac-
 ters of a given length. The translation is performed in
 place.

 The correspondence of entry points to the MTS translation
 tables is as follows:

 Entry Pt. MTS Table _________ _________

 TASEB ASCEBC
 TEBAS EBCASC
 TLCUC TRLCUC
 TUCLC TRUCLC
 TIASEB IASCEBC (TRIAE)
 TIEBAS IEBCASC (TRIEA)

 See the descriptions of the MTS translation tables in this
 volume for the complete details of each table.

 Example: FORTRAN: LOGICAL*1 INBUFF(256),OUTBUF(256)
 ...
 CALL TASEB(INBUFF,LENGTH)
 CALL TLCUC(INBUFF,LENGTH)
 ...
 CALL TEBAS(OUTBUF,256)

 Translation Routines 508.5

 MTS 3: System Subroutine Descriptions

 April 1981

 In the above example, a 256-character buffer of ASCII
 characters in translated on input to EBCDIC and then
 to uppercase. On output, the buffer is translated
 back to ASCII characters.

 508.6 Translation Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 TRLCUC, TRUCLC ______________

 Translate Table Description

 Contents: Translate tables to convert lowercase letters into upper-
 case letters, or uppercase letters into lowercase letters.

 Location: Resident System

 Alt. Entry: CASECONV is an alternate entry for TRLCUC.

 Calling Sequences:

 Assembly: L r,=V(TRLCUC)
 TR name,0(r)

 L r,=V(TRUCLC)
 TR name,0(r)

 Parameters:

 r is a general register that will contain the _
 address of the translate table.
 name is the location of the region to be translated. ____

 Description: The TRLCUC table translates lowercase letters (a-z) to
 uppercase letters (A-Z). The TRUCLC table translates
 uppercase letters to lowercase letters. Both tables leave
 nonalphabetic characters unchanged.

 Example: Assembly: L 6,=V(TRLCUC)
 TR REG(100),0(6)
 .
 .
 REG DS CL100

 FORTRAN: LOGICAL*1 REG(100),TRTAB(256)
 COMMON /TRLCUC/TRTAB
 ...
 CALL ITR(100,REG,0,TRTAB,0)

 The above examples will convert the lowercase letters of
 the 100-byte region at location REG into uppercase
 letters.

 The FORTRAN example uses the ITR subroutine (see the
 description of the Logical Operators subroutines in this
 volume). In addition, a RIP loader record (RIP TRLCUC)
 must be inserted into the FORTRAN object file to force the
 loader to resolve the symbol TRLCUC from the low-core
 symbol table.

 TRLCUC, TRUCLC 509

 MTS 3: System Subroutine Descriptions

 April 1981

 510 TRLCUC, TRUCLC

 MTS 3: System Subroutine Descriptions

 April 1981

 TRTLC, TRTUC, TRTNONAN ______________________

 Translate Table Description

 Purpose: 256-byte translate tables that may be used to detect the
 presence of lowercase letters, uppercase letters, or
 nonalphanumeric characters.

 Location: Resident System

 Calling Sequence:

 Assembly: SR 2,2
 L r,=V(TRTLC)
 TRT char,0(r)

 SR 2,2
 L r,=V(TRTUC)
 TRT char,0(r)

 SR 2,2
 L r,=V(TRTNONAN)
 TRT char,0(r)

 Parameters:

 r is a general register containing the address of _
 the desired translate table.
 char is the location of the character string to be ____
 tested.

 Values Returned:

 GR1 will contain the address of the detected lower-
 case letter (for TRTLC), the detected uppercase
 letter (for TRTUC), or the detected nonalphanum-
 eric character (for TRTNONAN). If no corre-
 sponding letter or character is detected, GR1
 will be unchanged.

 GR2 will contain the detected lowercase or uppercase
 letter, or will be unchanged if none is
 detected.

 The condition code is set to zero if the character
 string contains no lowercase letters (for TRTLC),
 uppercase letters (for TRTUC), or nonalphanumeric
 characters (for TRTNONAN).

 TRTLC, TRTUC, TRTNONAN 511

 MTS 3: System Subroutine Descriptions

 April 1981

 Description: The TRTLC table may be used to detect the presence of
 lowercase letters (a-z) in a character string. The TRTUC
 table may be used to detect the presence of uppercase
 letters (A-Z) in a character string. The TRTNONAN table
 may be used to detect the presence of nonalphanumeric
 characters (not a-z, A-Z, 0-9, or _) in a character
 string.

 Example: Assembly: SR 2,2
 L 3,=V(TRTLC)
 TRT NAME,0(3)
 BZ EXIT No lowercase letters
 STC GR2,LTR Save detected letter
 .
 .
 NAME DS CL16 Character string
 LTR DS C Detected letter

 FORTRAN: LOGICAL*1 NAME(16),TRTAB(256)
 COMMON /TRTLC/TRTAB
 ...
 I = ITRT(16,NAME,0,TRTAB,0,N,LTR)
 IF (I.EQ.0) GO TO 10
 C LTR contains the detected letter
 C N contains the displacement of detected
 C letter
 ...
 10 No lowercase letters

 The above examples test for the presence of a lowercase
 letter in the 16-byte character string contained in NAME.

 The FORTRAN example uses the ITRT subroutine (see the
 description of the Logical Operators subroutines in this
 volume). In addition, a RIP loader record (RIP TRTLC)
 must be inserted into the FORTRAN object file to force the
 loader to resolve the symbol TRTLC from the low-core
 symbol table.

 512 TRTLC, TRTUC, TRTNONAN

 MTS 3: System Subroutine Descriptions

 April 1981

 TRUNC _____

 Subroutine Description

 Purpose: To deallocate unused space at the end of a file previously
 allocated to the file.

 Location: Resident System

 Calling Sequence:

 Assembly: CALL TRUNC,(unit)

 FORTRAN: CALL TRUNC(unit,&rc4,&rc8,&rc12,&rc16,&rc20)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 rc4,...,rc20 (optional) are statement labels to ____________
 transfer to if a nonzero return code occurs.

 Return Codes:

 0 The file has been truncated successfully.
 4 The file does not exist.
 8 Hardware error or software inconsistency
 encountered.
 12 Truncate (or write-extend) access not allowed.
 16 Locking the file for modification will result in a
 deadlock.
 20 An attention interrupt has canceled the automatic
 wait on the file (waiting caused by concurrent
 usage of the shared file).

 Notes: This subroutine does not optimize or compress line ___
 files. It simply checks to see if any space at
 the end of the file has not been used and, if so,
 deallocates it.

 If a wait to lock is interrupted by an attention
 interrupt, control passes to MTS unless the user
 program has established an attention interrupt
 exit (by calling the ATTNTRP subroutine). Follow-
 ing a $RESTART command or a return to the point of

 TRUNC 513

 MTS 3: System Subroutine Descriptions

 April 1981

 interruption from the attention exit, a return is
 made from TRUNC with a return code of 20.

 Examples: Assembly: CALL TRUNC,(UNIT)
 .
 .
 UNIT DC F’5’

 FORTRAN: INTEGER*4 UNIT
 DATA UNIT/5/
 ...
 CALL TRUNC(UNIT)

 The above examples will truncate the file attached to
 logical I/O unit 5.

 514 TRUNC

 MTS 3: System Subroutine Descriptions

 April 1981

 TWAIT _____

 Subroutine Description

 Purpose: To wait, for a specified real time interval, and return.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL TWAIT,(code,value)

 FORTRAN: CALL TWAIT(code,value,&rc4)

 Parameters:

 code is the location of a fullword integer which ____
 specifies the meaning of the value parameter. _____
 The valid choices are

 0 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds,
 relative to the time of the call.
 1 value is an 8-byte binary integer which _____
 specifies a time interval in microseconds,
 relative to midnight, March 1, 1900.
 2 value is a 16-byte EBCDIC string giving _____
 the time and date at which the wait should
 end, in the form HH:MM.SSMM-DD-YY.

 value is the 8- or 16-byte, fullword-aligned region _____
 which specifies the time at which the wait
 should end, as determined by the code ____
 parameter.
 rc4 (optional) is a statement label to transfer ___
 to if a nonzero return code occurs.

 Return Codes:

 0 Successful return
 4 Invalid code parameter ____

 Description: The TWAIT subroutine puts the task into wait state until
 the time interval specified by the code and value parame- ____ _____
 ters has elapsed, and then returns.

 TWAIT 515

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: FORTRAN: INTEGER TENSEC(2) /0,10000000/
 INTEGER TWO30(4)/’02:3’,’0.00’,’05-1’,’0-72’/
 ...
 CALL TWAIT(0,TENSEC)
 CALL TWAIT(2,TWO30)

 This example calls TWAIT twice, the first time specifying
 that a pause of 10 seconds relative to the time of the
 call on TWAIT is to occur, the second time specifying that
 a pause is to occur which will last until 2:30 am on May
 10, 1972.

 516 TWAIT

 MTS 3: System Subroutine Descriptions

 April 1981

 UNLK ____

 Subroutine Description

 Purpose: To request that a file be unlocked, i.e., to dynamically
 allow access to a file (allow it to be shared by others)
 which has previously been restricted by locking (either
 explicitly or implicitly).

 Location: Resident System

 Alt. Entry: UNLCK

 Calling Sequence:

 Assembly: CALL UNLK,(unit)

 FORTRAN: CALL UNLK(unit,&rc4)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (as re-
 turned by GETFD),
 (b) a fullword-integer logical I/O unit num-
 ber (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS) used to lock the
 file (either explicitly in a call to LOCK
 or implicitly in a call to WRITE, for
 example).
 rc4 is the statement label to transfer to if the ___
 corresponding return code occurs.

 Return Codes:

 0 The file has been unlocked successfully.
 4 Illegal unit parameter specified, or hardware ____
 error or software inconsistency.

 Note: If more than one FDUB within a job has a locking ______
 request on the file, after the call to UNLK, the
 file is left locked at the level of the highest
 remaining request.

 Description: See Appendix D of the section "Files and Devices" in MTS
 Volume 1, The Michigan Terminal System, for details _______________________________
 concerning concurrent use of shared files.

 UNLK 517

 MTS 3: System Subroutine Descriptions

 April 1981

 Examples: Assembly: CALL UNLK,(UNIT)
 .
 .
 UNIT DC F’6’

 FORTRAN: INTEGER*4 UNIT
 DATA UNIT/6/
 ...
 CALL UNLK(UNIT)

 The above examples will unlock the file attached to
 logical I/O unit 6 assuming the file has previously been
 locked (e.g., by a call to the LOCK subroutine).

 518 UNLK

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 UNLOAD, UNLDF _____________

 Subroutine Description

 Purpose: To UNLOAD what was loaded on some previous call to the
 LOAD subroutine.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL UNLOAD,(name,sinbr,sws)

| FORTRAN: CALL UNLDF(name,sinbr,sws,&rc4,&rc8)
|
| index = UNLDF(name,sinbr,sws,&rc4,&rc8)

 Parameters:

 name is either the location of the "name" (speci- ____
 fied by sws) or zero. ___
 sinbr is either the location of the fullword _____
 (INTEGER*4) storage index number or zero.
 This parameter is referenced only if name is ____
 zero.
 sws is the location of a fullword switch: ___

 0 name is the FDname from which the materi- ____
 al was LOADed.
 1 name is an 8-character, left-justified, ____
 external symbol.
 2 name is a fullword virtual memory loca- ____
 tion (the SYMTAB option must be ON).
| 128 same as sws=0, except that on return ___
| index contains the storage index number _____
| of the storage that is released.
| 129 same as sws=1, except that on return ___
| index contains the storage index number _____
| of the storage that is released.
| 130 same as sws=2, except that on return ___
| index contains the storage index number _____
| of the storage that is released.
|
| index (GR0) contains the storage index number of _____
| the storage that is released if sws is 128, ___
| 129, or 130.
| rc4,rc8 are statement labels to transfer to if a _______
 nonzero return code is encountered.

 UNLOAD, UNLDF 519

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 Return Codes:

 0 Successful return.
 4 The subroutine could not find the name in the LOAD
 table, or sws is nonzero and SYMTAB is OFF, or the ___
 external symbol or virtual memory address could
 not be found in the loader tables.
| 8 Invalid parameter.

 Description: Each time the LOAD subroutine is called, a new storage
 index number is assigned for use with storage acquired in
 order to load the material in the file specified for that
 LOAD call. In order to unload the material, either the
 storage index number or the name of the file LOADed from
 may be given. In addition, if the global switch SYMTAB is
 ON, the name of an external symbol or a virtual memory
 location in the material loaded may be specified. In any
 case, all of the material loaded on that call on LOAD is ___
 unloaded. See the "Virtual Memory Management" section in
 MTS Volume 5, System Services, for a further description _______________
 of using storage index numbers with the LOAD and UNLOAD
 subroutines.

 Examples: FORTRAN: CALL UNLDF(’PROGALE ’,0,1,&99)

 This example calls UNLDF to find the storage index number
 associated with the external symbol PROGALE. All storage
 with that storage index number is unloaded.

 CALL UNLDF(BUFLOC,0,2,&9)

 This example calls UNLDF to find the storage index
 associated with the virtual memory address in location
 BUFLOC. All storage with that storage index number is
 unloaded.

 Assembly: CALL UNLOAD,(0,SIN,0)
 .
 .
 SIN DS F

 This example calls UNLOAD to unload all storage with the
 storage index number in location SIN.

 520 UNLOAD, UNLDF

 MTS 3: System Subroutine Descriptions

 April 1981

 URAND _____

 Subroutine Description

 Purpose: To compute uniformly distributed real random numbers
 between 0 and 1.0.

 Location: *LIBRARY

 Calling Sequences:

 Assembly: CALL URAND,(value)

 FORTRAN: x = URAND(value)

 Parameters:

 value is the location of a fullword integer used for _____
 generating the random number.

 Values Returned:

 FR0 will contain the uniformly distributed random
 number generated by the subroutine. For FORTRAN
 users, this value will be returned in x. _

 Description: If value contains a nonzero odd integer between 1 and _____
 2³¹-1 (2147483647), then a new integer random number will
 be generated using the formula

 value=(65539*value)(mod 2³¹-1). _____ _____

 The corresponding real random number x will be returned as _
 a function value for FORTRAN or in FR0 for assembly
 language users.

 On each successive call to URAND, value is updated _____
 according to the expression given above. The program
 calling URAND should provide an odd integer value for
 value when URAND is called for the first time; subsequent _____
 calls to URAND will automatically use the latest updated
 value.

 If the same sequence of random numbers is required on
 successive runs, the user must supply the same initial
 value of value. _____

 As a special case, the initial value of value may be zero. _____
 In this case, the next integer random number will be
 supplied by URAND and will depend upon the time of day.

 URAND 521

 MTS 3: System Subroutine Descriptions

 April 1981

 The new integer random number that is generated will be
 stored in value. Thus, X = URAND(0) is not permissible in _____ ___
 FORTRAN; a variable containing zero must be used instead.

 Examples: Assembly: CALL URAND,(INTEG)
 STE 0,RAND
 .
 .
 INTEG DC F’999’
 RAND DS E

 FORTRAN: INTEG=999
 X=URAND(INTEG)

 In both examples above, URAND is called with the initial
 value of 999. INTEG should not be modified between calls
 to URAND unless a new random-number sequence is to be
 initiated.

 522 URAND

 MTS 3: System Subroutine Descriptions

 April 1981

 WRITE _____

 Subroutine Description

 Purpose: To write an output record on a specified logical I/O unit.

 Location: Resident System

 Alt. Entry: MTSWRITE, WRITE#

 Calling Sequences:

 Assembly: CALL WRITE,(reg,len,mod,lnum,unit)

 FORTRAN: CALL WRITE(reg,len,mod,lnum,unit,&rc4,...)

 Parameters:

 reg is the location of the virtual memory region ___
 from which data is to be transmitted.
 len is the location of a halfword (INTEGER*2) inte- ___
 ger giving the number of bytes to be _____
 transmitted.
 mod is the location of a fullword of modifier bits ___
 used to control the action of the subroutine.
 If mod is zero, no modifier bits are specified. ___
 See the "I/O Modifiers" description in this
 volume.
 lnum is the location of a fullword integer giving the ____
 internal representation of the line number that
 is to be written or has been written by the
 subroutine. The internal form of the line
 number is the external form times 1000, e.g.,
 the internal form of line 1 is 1000, and the
 internal form of line .001 is 1.
 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified 8-character logical I/O
 unit name (e.g., SCARDS).
 rc4,... is the statement label to transfer to if the _______
 corresponding nonzero return code is
 encountered.

 WRITE 523

 MTS 3: System Subroutine Descriptions

 April 1981

 Return Codes:

 0 Successful return.
 4 Output device is full.
 >4 See the "I/O Subroutine Return Codes" description
 in this volume.

 Description: The subroutine writes a record on the logical I/O unit
 specified by unit of length len (in bytes) from the region ____ ___
 specified by reg. The parameter lnum is used only if the ___ ____
 mod parameter or the FDname specifies either INDEXED or ___
 PEEL (RETURNLINE#). If INDEXED is specified, the line
 number to be written is specified in lnum. If PEEL is ____
 specified, the line number of the record written is
 returned in lnum. ____

 If len is zero when writing to a line file , the line is ___
 deleted from the file.

 There are no default FDnames for WRITE.

 There is a macro WRITE in the system macro library for
 generating the calling sequence to this subroutine. See
 the macro description for WRITE in MTS Volume 14, 360/370 _______
 Assemblers in MTS. _________________

 Examples: The example below, given in assembly language and FORTRAN,
 calls WRITE specifying an output region of 80 bytes. The
 logical I/O unit specified is 6 and no modifier specifica-
 tion is made in the subroutine call.

 Assembly: CALL WRITE,(REG,LEN,MOD,LNUM,UNIT)
 .
 .
 REG DS CL80
 MOD DC F’0’
 LNUM DS F
 LEN DC H’80’
 UNIT DC F’6’

 or

 WRITE 6,REG Subr. call using macro.

 FORTRAN: INTEGER*2 LEN/80/
 INTEGER REG(20),LNUM
 ...
 CALL WRITE(REG,LEN,0,LNUM,6)

 The example below, given in assembly language and FORTRAN,
 sets up a call to WRITE specifying that the output will be
 written into the file FYLE.

 524 WRITE

 MTS 3: System Subroutine Descriptions

 April 1981

 Assembly: LA 1,=C’FYLE ’
 CALL GETFD
 ST 0,UNIT
 .
 .
 CALL WRITE,(REG,LEN,MOD,LNUM,UNIT)
 .
 .
 REG DS 20
 LEN DS H
 MOD DC F’0’
 LNUM DS F
 UNIT DS F

 FORTRAN: EXTERNAL GETFD
 INTEGER*4 ADROF,UNIT
 CALL RCALL(GETFD,2,0,ADROF(’FYLE ’),1,UNIT)
 ...
 CALL WRITE(REG,LEN,0,LNUM,UNIT,&30)
 ...
 30 ...

 WRITE 525

 MTS 3: System Subroutine Descriptions

 April 1981

 526 WRITE

 MTS 3: System Subroutine Descriptions

 April 1981

 WRITEBUF ________

 Subroutine Description

 Purpose: To write out all changed disk file buffers.

 Location: Resident System

 Alt. Entry: WRITBF

 Calling Sequences:

 Assembly: CALL WRITEBUF,(unit)

 FORTRAN: CALL WRITBF(unit,&rc4)

 Parameters:

 unit is the location of either ____
 (a) a fullword-integer FDUB-pointer (such as
 returned by GETFD),
 (b) a fullword-integer logical I/O unit number
 (0 through 99), or
 (c) a left-justified, 8-character logical I/O
 unit name (e.g., SCARDS).
 rc4 is the statement label to transfer to if the ___
 corresponding return code occurs.

 Return Codes:

 0 Successful return.
 4 Illegal unit parameter specified, or hardware ____
 error or software inconsistency encountered.

 Description: A call on this subroutine causes all changed lines in the
 file buffers to be written to the file, thus making the
 file on the disk an up-to-date copy.

 This subroutine does not release the file buffers and does ___
 not close the file; i.e., it is not necessary to open the
 file again (read the catalog, etc.) on subsequent I/O
 operations.

 Examples: Assembly: CALL WRITEBUF,(UNIT)
 .
 .
 UNIT DC CL8’SPRINT’

 WRITEBUF 527

 MTS 3: System Subroutine Descriptions

 April 1981

 FORTRAN: CALL WRITBF(’SPRINT ’)

 The above examples cause WRITEBUF to update the disk copy
 of the file attached to the logical I/O unit SPRINT.

 528 WRITEBUF

 MTS 3: System Subroutine Descriptions

 April 1981

 XCTL, XCTLF ___________

 Subroutine Description

 Purpose: To effect the dynamic loading and execution of a program.

 Location: Resident System

 Calling Sequences:

 Assembly: CALL XCTL,(input,info,parlist,errexit,output,
 lsw,gtsp,frsp,pnt)

 FORTRAN: CALL XCTLF(input,info,parlist,errexit,output,
 lsw,gtsp,frsp,pnt)

 Parameters:

 input is the location of an input specifier to be _____
 used during loading to read loader records.
 An input specifier may be one of the
 following:

 (1) an FDname terminated by a blank.
 (2) a FDUB-pointer (as returned by GETFD).
 (3) an 8-character logical I/O unit name,
 left-justified with trailing blanks. In
 this case, bit 8 in info must be 1. ____
 (4) a fullword-integer logical I/O unit num-
 ber (0-99).
 (5) the address of an input subroutine to be
 called during loading via a READ sub-
 routine calling sequence to read loader
 records (i.e., the input subroutine is
 called with a parameter list identical
 to the system subroutine READ). In this
 case, bit 9 in info must be 1. ____

 info is the location of an optional information ____
 vector. No information is passed if info is ____
 0 or if info is the location of a fullword ____
 integer 0. The format of the information
 vector is as follows:

 (1) a halfword of XCTL control bits defined
 as follows:

 bit 0: 1, if errexit parameter is _______
 specified.
 bit 1: 1, if output is specified. ______

 XCTL, XCTLF 529

 MTS 3: System Subroutine Descriptions

 April 1981

 bit 2: 1, if lsw is specified. ___
 bit 3: 1, if gtsp is specified. ____
 bit 4: 1, if frsp is specified. ____
 bit 5: 1, if pnt is specified. ___
 bit 6: 1, if to suppress search of
 LIBSRCH/*LIBRARY libraries.
 bit 7: 1, to request XCTL to restore
 the registers of the previ-
 ous link level before trans-
 ferring control to the spec-
 ified program.
 0, if the caller has restored
 them.
 bit 8: 1, if input is the location of _____
 a logical I/O unit name.
 bit 9: 1, if input is the location of _____
 an input subroutine address.
 bit 10: 1, if output is the location of ______
 a logical I/O unit name.
 bit 11: 1, if output is the location of ______
 an output subroutine
 address.
 bit 12: 1, if the program to be loaded
 is to be merged with the
 program previously loaded.
 bit 13: 1, to suppress prompting at a
 terminal.
 bit 14: 1, to force allocation of a new
 loader symbol table.
 bit 15: 0

 (2) a halfword count of the number of
 entries in the following initial ESD
 list.
 (3) a variable-length initial ESD list, each
 entry of which consists of a fullword-
 aligned 8-character symbol followed by a
 fullword value.

 parlist is the location of a parameter list to be _______
 passed in GR1 to the program being trans-
 ferred to.

 errexit (optional) is the location of an error-exit _______
 subroutine address to be called if an error
 occurs while attempting to transfer to the
 specified program. If bit 0 of info is 0 ____
 (the default), the errexit parameter is _______
 ignored and an error return is made to MTS
 command mode. The exit routine will be
 called via a standard S-type calling sequence
 with two parameters defined as follows:

 530 XCTL, XCTLF

 MTS 3: System Subroutine Descriptions

 April 1981

 P1: the location of a fullword integer error
 code defined as follows:

 0: attempt to load a null program.
 4: fatal loading error (bad object
 program).
 8: undefined symbols referenced by the
 loaded program.

 P2: the location of a fullword containing
 the loader status word.

 If the exit routine returns, XCTL will return
 to MTS without releasing program storage
 (i.e., as if the error exit had not been
 taken).

 output (optional) is the location of an output ______
 specifier to be used during loading to pro-
 duce loader output (error messages, map,
 etc.). If bit 1 of info is 0 (the default), ____
 the output parameter is ignored and all ______
 loader output is written on the MAP=FDname
 specified on the initial $RUN command. An
 output specifier may be one of the following:

 (1) an FDname terminated by a blank.
 (2) a FDUB-pointer (as returned by GETFD).
 (3) an 8-character logical I/O unit name,
 left-justified with trailing blanks. In
 this case, bit 10 of info must be 1. ____
 (4) a fullword-integer logical I/O unit num-
 ber (0-99).
 (5) the address of an output subroutine to
 be called during loading via the SPRINT
 subroutine calling sequence to write
 loader output (i.e., the output sub-
 routine is called with a parameter list
 identical to the system subroutine
 SPRINT). In this case, bit 11 of info ____
 must be 1.

 lsw (optional) is the location of a fullword of ___
 loader control bits. If bit 2 of info is 0 ____
 (the default), the lsw parameter is ignored ___
 and the global MTS settings are used. The
 loader control bits are defined as follows:

 bits 0-23: 0
 bit 24: 1, to suppress the pseudo-register
 map.
 bit 25: 1, to suppress the predefined symbol
 map.

 XCTL, XCTLF 531

 MTS 3: System Subroutine Descriptions

 April 1981

 bit 26: 1, to print undefined symbols.
 bit 27: 1, to print references to undefined
 symbols.
 bit 28: 1, to print references to all exter-
 nal symbols.
 bit 29: 1, to print dotted lines around the
 loader map.
 bit 30: 1, to print a map.
 bit 31: 1, to print nonfatal error messages.

 gtsp (optional) is the location of a storage ____
 allocation subroutine to be called during
 loading via a GETSPACE calling sequence to
 allocate loader work space and program stor-
 age. If bit 3 of info is zero (the default), ____
 GETSPACE is used.

 frsp (optional) is the location of a storage ____
 deallocation subroutine to be called during
 loading via a FREESPAC calling sequence to
 release loader work space. If bit 4 of info ____
 is 0 (the default), FREESPAC is used.

 pnt (optional) is the location of a direct access ___
 subroutine to be called during loading via a
 POINT calling sequence while processing
 libraries in sequential files. If bit 5 of
 info is 0 (the default), POINT is used. ____

 Values Returned:

 None.

 Description: XCTL provides a method for dynamically loading and execut-
 ing programs in an overlay fashion. XCTL provides this
 facility as follows:

 (1) XCTL makes a copy of all its parameter values and
 releases all storage associated with the current
 link level.
 (2) The loader is called to dynamically load the
 specified program using input, info, output, lsw, _____ ____ ______ ___
 gtsp, frsp, and pnt if specified. ____ ____ ___
 (3) The dynamically loaded program is called with the
 address of parlist in GR1. _______
 (4) If the dynamically loaded program returns to XCTL,
 it is unloaded.
 (5) XCTL returns to the program which initiated the
 current link level, preserving the return regis-
 ters of the dynamically executed program.

 Note that XCTL accepts a variable-length parameter list of
 three to eight arguments. For most applications, only

 532 XCTL, XCTLF

 MTS 3: System Subroutine Descriptions

 April 1981

 the first three are required. These parameters passed to
 XCTL may be part of the current link level to be released,
 since XCTL makes copies of them. However, the parameter
 list and parameters passed to the program XCTLed to, as
 well as the optional subroutines specified by input, _____
 output, errexit, gtsp, frsp, and pnt may not be part of ______ _______ ____ ____ ___ ___
 the current link level since it is released before the
 program transferred to, is loaded and executed.

 Note that by default it is the user’s responsibility to
 restore the registers of the previous link level before
 calling XCTL. Since this is possible in general only at
 the assembly language level, calls to XCTL from higher-
 level languages (e.g., FORTRAN, PL/I, etc.) must have bit
 7 in info set to 1. ____

 FORTRAN programs (or programs that use the FORTRAN I/O
 library) that dynamically load other FORTRAN programs (or
 programs using the FORTRAN I/O library) should use the
 alternate entry point XCTLF. XCTLF is required to provide
 the dynamically loaded program with a FORTRAN I/O environ-
 ment consistent with the "merge" bit specified in info. ____
 If the merge bit is 1, the dynamically loaded program will
 have the same I/O environment as the calling program. If
 the merge bit is 0, the dynamically loaded program will
 have a separate, reinitialized I/O environment. Both
 FORTRAN main programs and subroutines can be dynamically
 loaded using XCTLF. However, the effect of executing a
 STOP statement from a dynamically loaded subroutine will
 depend on the setting of the merge bit. If the merge bit
 is 1, a return is made to the program which linked to the
 calling program; if the merge bit is 0, a return is made
 to MTS.

 Because the rate structure for use of MTS includes a
 charge for allocated virtual memory integrated over CPU
 time, the cost of running a large software package in MTS
 can often be reduced by dynamically loading and executing
 sequential phases in an overlay fashion via calls to XCTL.
 Such savings in the storage integral must be weighed
 against the additional CPU time required to open a second
 file, reinvoke the loader, and rescan the required
 libraries.

 The user also should see the sections "The Dynamic Loader"
 and "Virtual Memory Management" in MTS Volume 5, System ______
 Services, In particular, they describe the use of initial ________
 ESD lists, merging with previously loaded programs, and
 the relationship between LINK, LOAD, and XCTL storage
 management.

 XCTL, XCTLF 533

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: Assembly: LA 0,1 Highest-level stg
 LA 1,PARLEN Length required
 L GR15,=V(GETSPACE) Allocate space
 BALR GR14,GR15 for par list
 ST 1,XCPAR+8 Save address
 LA 2,4(1) Set the par list
 ST 2,PARAD
 MVC 0(PARLEN,1),PARAD Move in params
 LA 1,XCPAR Get par list ptr
 L 15,=V(XCTL) GET XCTL address
 L 13,MYSAVE+4 Set save area ptr
 LM 2,12,28(13) Set caller’s regs
 L 14,12(13)
 BR 15 Invoke XCTL
 .
 .
 MYSAVE DS 18A
 XCPAR DC A(INPUT,INFO,0)
 INPUT DC C’*FTN ’
 INFO DC F’0’
 PARAD DC A(0)
 PAR DC Y(L’PARSTR)
 PARSTR DC C’S=-SOU,L=-LOAD,P=-PRINT’
 PARLEN EQU *-PARAD

 The above example dynamically loads *FTN and compiles the
 source program in the file -SOU into the file -LOAD with
 the listing written to -PRINT. When *FTN returns to XCTL,
 a return is made to the caller of the above assembly
 program. Note that if bit 7 of info is zero (the ____
 default), it is the responsibility of the program calling
 XCTL to restore the registers of the previous link before
 invoking XCTL.

 534 XCTL, XCTLF

 MTS 3: System Subroutine Descriptions

 April 1981

 Xerox 9700 Font Routines ________________________

 Subroutine Description

 Purpose: To access the Xerox 9700 font information tables.

 Location: Resident System

 Entry Points: The Xerox 9700 font routines have the following entry
 points: FNTINF, FNTSCN, FNTWID, FNTBLK.

 Description: These subroutines allow user programs to obtain informa-
 tion about Xerox 9700 page printer fonts. This informa-
 tion is used mainly by text processors, but also may be of
 use to other programs. The most common uses of these
 subroutines are by text-processors for obtaining the
 widths of characters in the font, and by user programs for
 determining whether a given 6-character name is a valid
 Xerox 9700 font name.

 The FNTINF subroutine returns information about a particu-
 lar font. The information includes the name of the
 typeface, the style of the font (roman, bold, italic,
 etc.), which character positions actually contain charac-
 ters, the orientation of the font (portrait or landscape),
 the name of the corresponding font(s) in the other
 orientation, and several other items.

 The FNTSCN subroutine returns the names of fonts satisfy-
 ing certain criteria such as all 10-point fonts in
 portrait orientation.

 The FNTWID subroutine returns the table of character
 widths for a proportionally spaced font. Since each
 character in such a font may have a different width, the
 table must be used by the text processor to determine how
 much text will fit on a line.

 The FNTBLK subroutine returns a list of "blanks" in a
 font. A proportionally spaced font contains blanks of
 several different widths which are used for positioning
 text within a line.

 Xerox 9700 Font Routines 534.1

 MTS 3: System Subroutine Descriptions

 April 1981

 FNTINF

 Purpose: To find information about a specific font.

 Calling Sequence:

 Assembly: CALL FNTINF,(name,n,array)

 FORTRAN: CALL FNTINF(name,n,array,&rc4)

 or

 INTEGER*4 FNTINF,rc
 rc = FNTINF(name,n,array)

 Parameters:

 name is a six-character font name (left-justified ____
 with trailing blanks, if shorter than six
 characters).
 n is the number of words in array. _ _____
 array is an integer-valued array whose elements _____
 will be set to the information returned.
 Only the first n of these will be set. The _
 information returned is described at the end
 of this description.
 rc is the fullword-integer value returned indi- __
 cating the result of the subroutine call (see
 "Return Codes" below). This value is return-
 ed both in GR0 and GR15 (i.e., both as a
 function value and as a return code).

 name and n should be set by the user before the call; ____ _
 the first n words of array to values as described _ _____
 below (at end after all calling sequences).

 Return Codes:

 0 Information is successfully returned.
 4 Font does not exist.

 534.2 Xerox 9700 Font Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 FNTSCN

 Purpose: To scan the font table for the names of fonts that satisfy
 specified criteria.

 Calling Sequence:

 Assembly: CALL FNTSCN,(ctl,name,n,array)

 FORTRAN: CALL FNTSCN(ctl,name,n,array,&rc4,&rc8)

 or

 INTEGER*4 FNTSCN,rc
 rc = FNTSCN(ctl,name,n,array)

 Parameters:

 name is a six-character font name (left-justified ____
 with trailing blanks, if shorter than six
 characters).
 n is the number of words in array. _ _____
 array is an integer-valued array whose elements _____
 will be set to the information returned.
 Only the first n of these will be set. The _
 information returned is described at the end
 of this description.
 ctl should be set to zero for the first call of a ___
 given scan and untouched on other calls.
 rc is the fullword-integer value returned indi- __
 cating the result of the subroutine call (see
 "Return Codes" below). This value is return-
 ed both in GR0 and GR15 (i.e., both as a
 function value and as a return code).

 The fields of array (nb: currently only the first 13 _____
 fields are looked at; this will be changed later to
 handle all fields) should be set to a value to be
 matched or to -1 for "don’t care" before a call is
 made. When the subroutine returns, all values will
 be changed to the values for the next font found (as
 if FNTINF had been called), and name will be set to ____
 the name of the font. Before the call to get the
 next font in the current scan, the caller must set
 all the fields to -1 or value being looked for again.

 Return Codes:

 0 A font was found.
 4 No (more) fonts satisfying requirements.
 8 ctl was changed by user to an illegal value. ___

 Xerox 9700 Font Routines 534.3

 MTS 3: System Subroutine Descriptions

 April 1981

 Example: Thus, calling FNTSCN with array(1) set to 1, array(3) set _____ _____
 to 10, array(13) set to 0, and all the other fields set to _____
 -1 will cause it to return in succession all the portrait
 fonts that are 10 point, fixed-pitch.

 534.4 Xerox 9700 Font Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 FNTWID

 Purpose: To get width tables for a specific font.

 Calling Sequence:

 Assembly: CALL FNTWID,(name,type,region)

 FORTRAN: CALL FNTWID(name,type,region,&rc4,&rc8,&rc12)

 or

 INTEGER*4 FNTWID,rc
 rc = FNTWID(name,type,region)

 Parameters:

 name is a six-character font name (left-justified ____
 with trailing blanks, if shorter than six
 characters).
 type should be set as follows: ____
 0 - table returned in region is 256 bytes ______
 1 - table returned in region is 256 ______
 halfwords
 2 - table returned in region is 256 ______
 fullwords
 region is the location of a region where the width ______
 table is returned.
 rc is the fullword-integer value returned indi- __
 cating the result of the subroutine call (see
 "Return Codes" below). This value is return-
 ed both in GR0 and GR15 (i.e., both as a
 function value and as a return code).

 Return Codes:

 0 Width table returned successfully.
 4 Font name not found.
 12 Unable to return table because type=0 and at least ____
 one character of font has width > 255.

 Description: Not all fonts that exist (rc=0 from FNTINF) will have __
 width tables (rc=0 from FNTWID). The ones that do not __
 have width tables are fixed-pitch fonts and the width of
 all characters in those fonts is returned in array(5) by _____
 FNTINF. There are, however, some fixed-pitch fonts that
 do have width tables. These are fonts for which all the
 printing characters have the same width, but which also
 have several blanks of varying widths.

 Xerox 9700 Font Routines 534.5

 MTS 3: System Subroutine Descriptions

 April 1981

 FNTBLK

 Purpose: To get list of blank characters for a specific font.

 Calling Sequence:

 Assembly: CALL FNTBLK,(name,nbr,region)

 FORTRAN: CALL FNTBLK(name,nbr,region,&rc4)

 or

 INTEGER*4 FNTBLK,rc
 rc = FNTBLK(name,nbr,region)

 Parameters:

 name is a six-character font name (left-justified ____
 with trailing blanks, if shorter than six
 characters).
 nbr is the location of a fullword integer which ___
 the caller sets before the call to indicate
 the number of bytes available in region. ______
 This routine will set nbr to the number of ___
 blank characters actually returned in region. ______
 region is the location of the region where the blank ______
 characters are returned. These are put in
 region one character per byte. To find out ______
 how wide each of these blanks is, you will
 have to use these characters as subscripts
 into the width table returned by FNTWID.
 rc is the fullword-integer value returned indi- __
 cating the result of the subroutine call (see
 "Return Codes" below). This value is return-
 ed both in GR0 and GR15 (i.e., both as a
 function value and as a return code).

 Return Codes:

 0 Blank information returned in region. ______
 4 Font name not found.

 Description: Fonts that exist (rc=0 from FNTINF) but have no width __
 table (rc=4 from FNTWID) will also return rc=4 from __ __
 FNTBLK. These fonts are usually fixed-pitch fonts that
 have one blank the same width as all the other characters
 (returned as array(5) from FNTINF) at position x’40’ for a _____
 normal font and x’20’ for an ASCII font.

 534.6 Xerox 9700 Font Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 Information in the array array: _____

 Item Subscript Description ____ _________ ___________

 Font Orientation 1 See below
 Point Size 2
 Font Size 3 Number of bits of font memory needed
 Linespacing 4 In dots (300 dots per inch)
 Charspacing 5 In dots
 Cell Height 6 In dots
 Baseline 7 Distance from cell bottom in dots
 Leading 8 In dots
 Typestyle Code 9 See below
 Typemod Code 10 See below
 Typecharset Code 11 See below
 Font Access 12 See below
 Font Kind 13 See below
 Raster Bitmap 14-21 See below
 Location 22 See below
 High Code 23 Highest ASCII value
 Landscape Name 24-25 Left-justified with trailing blanks
 Portrait Name 26-27 Left-justified with trailing blanks
 Inverse Landscape Name 28-29 Left-justified with trailing blanks
 Inverse Portrait Name 30-31 Left-justified with trailing blanks
 Font code set 32 0=EBCDIC, 1=ASCII

 For the four name fields in 24-31, if a given field is all blank, then
 either the font in that rotation is not on any machine or else the CCID
 making the call has no access to it.

 Font Orientation:
 Landscape is 0
 Portrait is 1
 Inverse landscape is 2
 Inverse portrait is 3
 Landscape or inverse landscape is 100
 Portrait or inverse portrait is 101

 The last two may be used on calls to FNTSCN; they will never be
 returned by FNTINF or FNTSCN.

 Font Access:
 Anyone is 0
 Staff is 1
 Pageid is 2 (restricted to ccid PAGE)
 File is 3 (who can access depends on access to a file)
 Not On 9700 is 4
 Deprecated is 5
 Anticipated is 6

 Deprecated is the same as Anyone but the font is not documented.
 Anticipated is the same as Staff, but it is documented as if it was
 Anyone.

 Xerox 9700 Font Routines 534.7

 MTS 3: System Subroutine Descriptions

 April 1981

 Font Kind:
 Fixed is 0
 Proportional is 1

 The raster bitmap is a sequence of 256 bits. Each bit is 1 if the
 corresponding code position in the font has a printing character (the
 leftmost bit of the word at subscript 14 corresponds to X’00’; the
 rightmost bit of the word at subscript 21 corresponds to X’FF’). One
 should not assume that the characters of Xerox 9700 fonts are located in
 any standard position, e.g., they do not necessarily correspond to the
 locations used for the EBCDIC collating sequence.

 Location:
 CNTR is 1 ─┐
 NUBS is 2 | additive
 UNYN is 4 ─┘

 The Typestyle, Typemod, and Typecharset fields are designed to do a
 simple classification that is sufficient for structuring the documenta-
 tion of fonts for casual users. Although existing values will probably
 not be changed, others will certainly be added.

 Typestyle is a grouping in which some of the entries are actually
 typefaces and some are just a collection of things. Typemod includes
 various modifiers, none or more than one of which may be applied.
 Typecharset is some additional words on the characters in those fonts
 (see CCMemo 803 for some more explanation).

 The current meanings for values in those fields are:

 Typestyle Code:
 Unclassified 0
 Xerox 1200 1
 APL 2
 Serif 3
 Scientific 10 4
 Letter Gothic 5
 Prestige Elite 6 (7-8 skipped)
 Univers 9
 Press Roman 10 (11-12 skipped)
 Helvetica 13
 Century Schoolbook 14
 Script 10 15
 Form Font 16
 Bar Codes 17
 Plot Fonts 18
 Shading Font 19
 Spacing Font 20
 Computer Modern Roman 21
 Computer Modern Typewriter 22
 Computer Modern Sanserif 23
 Computer Modern Dunhill 24
 Titan 10 25

 534.8 Xerox 9700 Font Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 Titan 12 26
 Trend PS 27
 Artisan 12 28
 OCR-A 29
 OCR-B 30
 Courier 12 31
 Metagraphics 32
 Times Roman 33
 Script 12 34
 Times Greek 35
 Devanagari 36
 Scientific Greek 10 37
 Scientific Greek 12 38
 USC Greek 39
 Computer Modern Funny Font 40
 Computer Modern Fibonacci 41
 Computer Modern Symbol 42
 Comp. Mod. Sanserif Quotation 43
 Comp. Mod. Variable Typewriter 44
 Miscellaneous 255

 Typemod Code:
 Normal 0
 Italic 1 ─┐
 Bold 2 | these
 Slanted 4 | are
 Unslanted 8 | additive
 Extended 16 |
 Condensed 32 |
 Demibold 64 ─┘
 Caps and small caps 129

 Typecharset Code:
 Normal 0
 Extended 1
 ALA 2
 Pi 3
 Cyrillic 4
 Greek 5
 Hindi 6
 Text 7
 Math Extension 8
 Math Symbol 9
 Math 10
 Dingbats 11
 UBC Extended 12
 Combined 13
 IBM PC Extra 14
 IBM PC 15
 Vertical Spacing 16
 Halfspace 17
 UM Default 18
 Rule 19

 Xerox 9700 Font Routines 534.9

 MTS 3: System Subroutine Descriptions

 April 1981

 Accents 20
 IBM PC APL 21
 Alternate 22
 LaTeX Symbol 23
 Circles 24
 Lines 25
 IBM PC part 1 26
 IBM PC part 2 27

 534.10 Xerox 9700 Font Routines

 MTS 3: System Subroutine Descriptions

 April 1981

 THE ELEMENTARY FUNCTION LIBRARY _______________________________

 The elementary function library (EFL) contains the mathematical and
 implicitly called subroutines usually associated with the FORTRAN IV
 language. In the FORTRAN language the mathematical routines are called
 because of an explicit reference to the name of the function in an
 arithmetic expression. Mathematical routines for the computation of the
 square root, exponential, logarithmic, trigonometric, hyperbolic, gamma,
 and error functions are provided. The implicitly called routines are
 invoked to perform complex multiplication and division, and to perform
 the various exponentiation operations occasioned by the FORTRAN **
 operator. Finally, this library also includes the ANSI FORTRAN intrin-
 sic minimum and maximum value functions, and the DREAL and DIMAG
 functions, which are inexplicably not a part of the IBM FORTRAN library.

 The programs contained in this elementary function library are system
 resident, and are defined in the low-core symbol dictionary named <EFL>.
 Special loader control cards at the end of the *LIBRARY file cause the
 symbol <EFL> to be defined; and, if there are still undefined symbols,
 then this symbol dictionary will be searched.

 List of Entry Points by General Function ____ __ _____ ______ __ _______ ________

 Absolute Value CABS, CDABS
 Square Root SQRT, DSQRT, CSQRT, CDSQRT
 Common and Natural Logarithm ALOG, ALOG10, DLOG, DLOG10, CLOG, CDLOG
 Exponential EXP, DEXP, CEXP, CDEXP
 Trigonometric Functions COS, SIN, TAN, COTAN, DCOS, DSIN, DTAN,
 DCOTAN, CCOS, CSIN, CDCOS, CDSIN
 Inverse Trigonometric Functions ARCOS, ARSIN, ATAN, ATAN2, DARCOS,
 DARSIN, DATAN, DATAN2
 Hyperbolic Functions COSH, SINH, TANH, DCOSH, DSINH, DTANH
 Gamma and Log-gamma Functions GAMMA, ALGAMA, DGAMMA, DLGAMA
 Error Function ERFC, ERF, DERFC, DERF
 Exponentiation FIXPI#, FRXPI#, FDXPI#, FCXPI#,FCDXI#,
 FRXPR#, FDXPD#
 Complex Operations CMPY#, CDVD#, CDMPY#, CDDVD#,
 DREAL¹, DIMAG¹
 Minimum/Maximum Value MIN0, AMIN0, MIN1, AMIN1, DMIN1
 MAX0, AMAX0, MAX1, AMAX1, DMAX1

 ──────────
 ¹Since the DREAL and DIMAG functions are not built into the current
 FORTRAN compilers, they must be explicitly declared as REAL*8
 functions.

 The Elementary Function Library 535

 MTS 3: System Subroutine Descriptions

 April 1981

 Mathematical Functions ____________ _________

 REAL*4 REAL*8 COMPLEX*8 COMPLEX*16 ______ ______ _________ __________

 CABS¹ CDABS¹
 SQRT DSQRT CSQRT CDSQRT
 EXP DEXP CEXP CDEXP
 ALOG DLOG CLOG CDLOG
 ALOG10 DLOG10
 COS DCOS CCOS CDCOS
 SIN DSIN CSIN CDSIN
 TAN DTAN
 COTAN DCOTAN
 ARCOS DARCOS
 ARSIN DARSIN
 ATAN¹ DATAN¹
 ATAN2² DATAN2²
 COSH DCOSH
 SINH DSINH
 TANH¹ DTANH¹
 ERFC¹ DERFC¹
 ERF¹ DERF¹
 ALGAMA DLGAMA
 GAMMA DGAMMA

 FORTRAN Implicitly Called Functions _______ __________ ______ _________

 Complex operations: name(multiplicand-dividend,multiplier-divisor)

 COMPLEX*8 COMPLEX*16 _________ __________

 CMPY# CDMPY#
 CDVD# CDDVD#

 Exponentiation: name(base,exponent)

 Name Base Exponent ____ ____ ________

 FIXPI# INTEGER*4 INTEGER*4
 FRXPI# REAL*4 INTEGER*4
 FDXPI# REAL*8 INTEGER*4
 FCXPI# COMPLEX*8 INTEGER*4
 FCDXI# COMPLEX*16 INTEGER*4
 FRXPR# REAL*4 REAL*4
 FDXPD# REAL*8 REAL*8

 536 The Elementary Function Library

 MTS 3: System Subroutine Descriptions

 April 1981

 ANSI FORTRAN Minimum/Maximum Value ____ _______ _______________ _____

 Name Arguments Mode Result Mode ____ _________ ____ ______ ____

 MIN0/MAX0 INTEGER*4 INTEGER*4
 MIN1/MAX1 REAL*4 INTEGER*4
 AMIN0/AMAX0 INTEGER*4 REAL*4
 AMIN1/AMAX1 REAL*4 REAL*4
 DMIN1/DMAX1 REAL*8 REAL*8

 ──────────
 ¹These routines do not recognize any error conditions and never transfer
 to the error monitor.
 ²These routines require two arguments.

 Calling Conventions ___________________

 The programs contained in the EFL conform to the OS(I) S-type calling
 convention with variable length parameter list as described in section
 "Calling Conventions" in this volume, i.e., they expect the FORTRAN
 linkage convention. This convention requires that the high-order bit of
 the last parameter address constant be nonzero. The EFL error monitor
 uses this last argument flag to determine how error situations should be
 processed; consequently, failure to properly set this flag may result in
 unexpected results if an error condition is detected. Further, unless
 specifically mentioned, all elements of the EFL require an 18-fullword
 (72-byte) save area.

 Since all members of the EFL are function-type subroutines, they
 cannot be meaningfully employed in the FORTRAN CALL statement because
 the FORTRAN program will ignore the function value returned by these
 programs. These function subprograms are called whenever the appropri-
 ate entry name appears in a FORTRAN arithmetic expression. The
 following FORTRAN arithmetic assignment statement refers to the mathe-
 matical functions COS and SQRT and the implicitly called exponentiation
 routine FRXPI#:

 SINX = SQRT(1.-COS(X)**2)

 Assembly language users may employ the CALL macro, but should specify
 the optional VL parameter in order to set the last argument flag byte,
 e.g.,

 CALL DCOSH,(X),VL

 The elementary functions return their values as follows:

 GR0 - INTEGER function
 FR0 - REAL function
 FR0,FR2 - COMPLEX function

 The Elementary Function Library 537

 MTS 3: System Subroutine Descriptions

 April 1981

 Except as noted, the mathematical functions require a single argument
 of the same mode as the function. The routines in the EFL are subject
 to specification exceptions when fetching their argument(s) should the
 boundary alignment be incorrect. The modes INTEGER*4, REAL*4 and
 COMPLEX*8 require fullword alignment, while REAL*8 and COMPLEX*16
 require doubleword alignment. The term INTEGER*4 corresponds to a
 System/360 fullword integer in the usual twos-complement notation. The
 term REAL*4 (REAL*8) corresponds to a System/360 short (long) operand
 floating-point number. The term COMPLEX*8 (COMPLEX*16) refers to two
 short (long) operand floating-point numbers occupying consecutive stor-
 age locations, the number in the higher storage location being the
 imaginary part of the complex number. The address constant passed to
 the EFL routine should correspond to the lower storage address, i.e.,
 the REAL part of the complex number.

 Error Processing ________________

 Error conditions detected by EFL routines are processed in the module
 ERRMON#. Depending on the optional arguments passed to the elementary
 function, the error monitor will either resume execution or provide an
 appropriate error comment and call the subroutine ERROR#.

 The vast majority of the EFL programs check the argument to ensure
 that a valid function value can be computed. For example, the inverse
 sine and cosine functions are only defined on the interval [-1,1] so
 that some procedure must be available for handling arguments outside
 this interval. There are currently three ways in which error conditions
 detected by an EFL program can be processed:

 (1) by using one or more of the optional arguments described below,
 (2) by calling the user error monitor, or
 (3) by printing an error message on SERCOM and then calling the
 subroutine ERROR#.

 Whenever an elementary function detects an error situation, it
 generates a default function value and passes control to the EFL error
 monitor. Although this error monitor is in fact a separate program, it
 is logically a part of each elementary function and is transparent with
 respect to the normal linkage conventions.

 The EFL error monitor initially attempts to process the optional
 arguments. If no such arguments were given, or if their processing does
 not result in the resumption of execution, then the error monitor will
 formulate an appropriate message. This message is passed, as the sole
 argument, to the user error monitor or is printed on SERCOM.

 With all optional arguments attached, the calling sequence becomes ________ _________

 ...name(argument(s),count,max-count,f-value)...

 Since the elementary function names are built into the FORTRAN compiler,
 it will diagnose as errors any occurrence of these names in which the

 538 The Elementary Function Library

 MTS 3: System Subroutine Descriptions

 April 1981

 number and modes of the arguments do not correspond to its table of
 definitions. The optional arguments discussed here may be appended to
 the usual argument list, without objection from the FORTRAN compiler, if
 the elementary function name is declared in an EXTERNAL statement and
 its proper mode is explicitly declared. The optional arguments are
 defined as follows:

 count - a fullword integer which is simply incremented by 1. If
 count is the only optional argument supplied, then execution
 is resumed with the default function value and return code
 4.

 max-count - a fullword integer upper bound for the first optional
 argument, count. If the updated value of count is greater
 than max-count, then the processing of the optional argu-
 ments is suspended. If max-count is the last optional
 argument supplied and the updated value of count is less
 than or equal to max-count, execution is resumed with the
 default function value and return code 4. Otherwise, the
 final optional argument is processed.

 f-value - the mode of this argument must correspond to the mode of the
 function. Execution is resumed with a function value of
 f-value and return code 4. Note that this optional argument
 is processed only if the updated value of count is less than
 or equal to max-count.

 In the above descriptions, the phrase "resume execution" means that it
 will appear that the elementary function has returned with the indicated
 function value and return code.

 If one of the optional arguments cannot be appropriately accessed, if
 count > max-count, or if no optional arguments are supplied, then the
 error monitor will formulate an error message. For the mathematical
 functions, this error message will take the form

 name(x.x) IS UNDEFINED AND HAS BEEN ASSIGNED THE VALUE y.y.
 THE DOMAIN OF DEFINITION OF THIS FUNCTION IS dod-message.

 where "x.x" and "y.y" are decimal representations of the argument and
 function value, respectively. The "dod-message" is dependent on the
 elementary function involved, but generally expresses the set of
 argument values for which the function is defined in the form

 (x: a < x < k)

 For example, the GAMMA function "dod-message" is "IS
 (X: .1381786E-75 < X < 57.57441)".

 Messages generated for exponentiation errors take the form:

 The Elementary Function Library 539

 MTS 3: System Subroutine Descriptions

 April 1981

 EXPONENTIATION ERROR: b.b ** e.e IS UNDEFINED AND HAS BEEN
 ASSIGNED THE VALUE y.y. MODE OF THE BASE IS mb, MODE OF THE
 EXPONENT IS me.

 where "b.b", "e.e", and "y.y" are decimal representations of the base,
 exponent and result, respectively. The modes "md" and "me" will be one
 of the following: INTEGER*4, REAL*4, REAL*8, COMPLEX*8 or COMPLEX*16.
 Generally, exponentiation routines only recognize an error when the base
 is 0.0 and the exponent is nonpositive; however, the current routines
 also complain when a real result cannot be properly represented, e.g.,
 10.**80. In either case, the error monitor dynamically allocates
 virtual memory space sufficient to generate and assemble this message.
 The message is generated in the form of a halfword integer length
 immediately followed by the text of the message.

 An elementary function library user error monitor is established by ____ _____ _______
 using the CUINFO subroutine. The name and index of the corresponding
 CUINFO item is ’EFLUEM ’ and 183, respectively, while the data is the
 address of the user error monitor. Thus, to establish a subroutine
 named UEM as the user error monitor, one could include the following
 FORTRAN statements in his program.

 EXTERNAL UEM
 CALL CUINFO(183,UEM)

 A user error monitor may be eliminated by calling CUINFO with a second
 argument of zero. The single argument to the user error monitor should
 be declared an INTEGER*2 vector, e.g.,

 SUBROUTINE UEM(MSG)
 INTEGER*2 MSG(2)
 CALL SERCOM(MSG(2),MSG(1),0)
 RETURN
 END

 This rather simple example prints the message on logical I/O unit
 SERCOM, and then resumes execution with the default function value.
 Since the messages are generally longer than a terminal output line,
 some of the message will be lost. Unless the user error monitor returns
 to the EFL error monitor, the virtual memory space allocated by this
 latter program will not be released.

 Finally, if the optional argument processing did not result in the
 resumption of execution and no user error monitor is established, then
 the EFL error monitor will provide, on SERCOM, an error message and a
 trace of the programs in the current linkage chain, i.e., the sequence
 of programs which have been called, but which have not yet returned to
 their calling programs. For example, if a main program named MAIN calls
 a subroutine named SUB, which attempts to compute DLOG(-5.D0), then the
 linkage chain is SUB, MAIN, and MTS. After providing this information,
 the error monitor will call the resident system subroutine ERROR#. If a
 subsequent $RESTART command is issued, execution will resume with the
 default function value.

 540 The Elementary Function Library

 MTS 3: System Subroutine Descriptions

 April 1981

 Example 1: _______ _

 C PROGRAM TO COMPUTE THE SQUARE ROOTS OF THE
 C ABSOLUTE VALUES OF THE NUMBERS READ FROM THE
 C INPUT STREAM AND KEEP A COUNT OF THE TOTAL
 C NUMBER OF NEGATIVE NUMBERS READ.
 EXTERNAL SQRT
 INTEGER I/0/
 10 READ 100,X
 Y = SQRT(X,I)
 PRINT 200,X,Y,I
 GO TO 10
 100 FORMAT (E20.8)
 200 FORMAT (2E17.9,I5)
 END

 Example 2: _______ _

 If the fourth statement in example 1 is replaced by

 Y = SQRT(X,I,10)

 then execution will be suspended when the 11th negative argument is
 passed to SQRT.

 Example 3: _______ _

 C PROGRAM TO TEST THE IDENTITY
 C COS(X)**2 + SIN(X)**2 = 1
 C FOR VALUES OF X READ FROM THE INPUT STREAM. THE
 C DSIN AND DCOS ROUTINES ARE UNDEFINED FOR X > PI*2**50,
 C BUT THE DEFAULT VALUES CHOSEN GUARANTEE THE IDENTITY.
 EXTERNAL DCOS,DSIN
 REAL*8 DCOS,DSIN,X,ONE
 10 IER = 0
 READ 100,X
 ONE = DCOS(X,IER,IER,0.D0)**2+DSIN(X,IER,IER,1.D0)**2
 PRINT 100,IER,ONE
 GO TO 10
 100 FORMAT (E20.8)
 200 FORMAT (I3,E17.9)
 END

 Example 4: _______ _

 The use of the following parameter list would guarantee that the
 elementary function would always denote error situations by a return
 code of 4.

 DC A(argument),XL1’FF’,AL3(ERRCNT)
 ERRCNT DC F’0’

 The Elementary Function Library 541

 MTS 3: System Subroutine Descriptions

 April 1981

 In addition, the word ERRCNT would be automatically updated to maintain
 a count of the total number of errors.

 Mathematical Functions ______________________

 The following descriptions of the mathematical functions are limited
 to error conditions which may arise in these programs. These routines
 are consistent with the FORTRAN IV library functions currently distribu-
 ted with the System/360 Operating System and have been documented by IBM
 in their publication IBM System/360 Operating System FORTRAN IV Library __
 - Mathematical and Service Subprograms, form GC28-6818. ______________________________________

 Square Root

 Because SQRT and DSQRT are specifically defined as real-valued
 functions, they are not defined for negative real arguments. The
 default function value when the argument is negative is the square
 root of the absolute value of the argument.

 Common and Natural Logarithm

 The real-valued logarithm functions ALOG, ALOG10, DLOG and DLOG10
 are not defined for negative arguments since the logarithm of a
 negative number is complex, i.e., if x<0 then ln(x) = ln(|x|)-
 i•Pi. The default function value is the logarithm of the absolute
 value of the argument.

 All of the logarithmic functions are undefined for an argument of
 zero, which is a pole of the logarithm function. Appropriately,
 the default function value is negative machine infinity, i.e.,
 roughly -.7237005•10⁷⁶.

 Exponential

 The real-valued functions EXP and DEXP can be properly defined only
 in the interval [-180.2182,174.67308] because of the range restric-
 tions imposed by the floating-point representation. The largest
 positive number representable in System/360 floating-point form is
 16⁶³•(1-164¹⁴), and the natural logarithm of this number is
 approximately 174.67308. Similarly, -180.2182 is the logarithm of
 the smallest positive number, 164⁶⁵. The actual domains are as
 follows:

 EXP (hex) -B4.37DF AE.AC4F
 DEXP (hex) -B4.37DEFFFFFFFF AE.AC4EFFFFFFFF

 EXP (dec) -180.218246 174.673080
 DEXP (dec) -180.218246459960934 174.673080444335934

 If the argument exceeds the upper limit, the default function value
 is machine infinity. If the argument is less than the lower limit,
 the default function value is zero; however, this situation is

 542 The Elementary Function Library

 MTS 3: System Subroutine Descriptions

 April 1981

 regarded as an error if and only if underflow exceptions are
 enabled by the program mask.

 It should be noted that the domain of the exponential functions is
 slightly smaller than the range of the corresponding natural
 logarithm functions. Hence, the expressions EXP(ALOG(X)) and
 DEXP(DLOG(X)) are not computable for values of X extremely close to
 the ends of the machine range.

 The complex-valued functions CEXP and CDEXP have an analogous
 domain restriction on the real part of the complex argument and an
 additional restriction on the imaginary part. Whether the complex
 argument satisfies the domain restrictions or not, the value of the
 CEXP(x+i•y) will be

 EXP(x)•[COS(y)+i•SIN(y)]

 and that of CDEXP(x+i•y) will be

 DEXP(x)•[DCOS(y)+i•DSIN(y)]

 Trigonometric Functions

 The domain restrictions of the real-valued trigonometric functions
 COS, SIN, TAN, COTAN, DCOS, DSIN, DTAN and DCOTAN are imposed to
 maintain accuracy. These functions are computed by reducing the
 argument to the interval [-Pi/4,Pi/4] by using the periodicity of
 these functions. For very large arguments this reduction yields so
 few significant digits in the reduced argument that meaningful
 computation of the function value is impossible. The single-
 precision functions require

 |x| < 2¹⁸•Pi = C90FD.9 = 823549.563

 while the limit for the double-precision functions is

 |x| < 2⁵⁰•Pi = C90FD9FFFFFFF.F = 3537118706008063.94.

 The default function value is uniformly zero.

 In addition, the tangent and cotangent functions will object if the
 argument is too close to one of their singularities to maintain
 accuracy or if the function value would exceed the machine range.
 In these situations, the default function value is machine infinity
 with the sign of the argument.

 The complex sine and cosine functions CCOS, CDCOS, CSIN and CDSIN
 can be defined as

 sin(x+i•y) = sin(x)•cosh(y)+i•cos(x)•sinh(y),

 cos(x+i•y) = cos(x)•cosh(y)+i•sin(x)•sinh(y).

 The Elementary Function Library 543

 MTS 3: System Subroutine Descriptions

 April 1981

 These formulas illustrate why a trigonometric-type domain restric-
 tion is applied to x, and an exponential-type domain restriction to
 y. The default function value is derived from the default values
 supplied by the appropriate sine, cosine and exponential routines,
 where cosh(y) and sinh(y) become machine infinity divided by 2 when
 |y| is too large.

 Inverse Trigonometric Functions

 The domain of the inverse sine and cosine functions ARCOS, ARSIN,
 DARCOS and DARSIN is the range of the sine and cosine functions,
 i.e., [-1,1]. Outside this interval, the default function value is
 zero.

 The inverse tangent routines ATAN2 and DATAN2 are undefined only
 for the argument pair (0.,0.), for which the default function value
 is zero. In effect, given the argument pair (y,x), these routines
 compute the principal value of the argument of the complex number
 x+i•y.

 Hyperbolic Functions

 The value of the hyperbolic sine and cosine of x exceed the range
 of the machine when |x| approaches the logarithm of machine
 infinity. Specifically, the domain of the COSH and SINH routines
 is described by

 |x| ≤ AF.5DC0 = 175.366211,

 and that of DCOSH and DSINH by

 |x| ≤ AF.5DC0FFFFFFFF = 175.366226196289059.

 The default function value is machine infinity with the appropriate
 sign.

 Gamma and Log-gamma Functions

 Like the exponential function, these functions exceed machine range
 outside their domains of definition and have a default function
 value of machine infinity. The specific hexadecimal intervals of
 definition are

 GAMMA [.100001•164⁶²,39.930D]
 DGAMMA [.100001•164⁶²,39.930CFFFFFFFF]
 ALGAMA [0,.184D30•16⁶²]
 DLGAMA [0,.184D2FFFFFFFFF•16⁶²]

 while in decimal these intervals become

 GAMMA [.138178829•104⁷⁵,57.5744171]
 DGAMMA [.13817882865895404•104⁷⁵,57.5744171142578089]

 544 The Elementary Function Library

 MTS 3: System Subroutine Descriptions

 April 1981

 ALGAMA [0,.429370581•10⁷⁴]
 DLGAMA [0,.429370581008241143•10⁷⁴].

 Implicitly Called Functions ___________________________

 Complex Arithmetic Operations

 CMPY# (COMPLEX*8-multiplicand,COMPLEX*8-multiplier)
 CDVD# (COMPLEX*8-dividend,COMPLEX*8-divisor)
 CDMPY# (COMPLEX*16-multiplicand,COMPLEX*16-multiplier)
 CDDVD# (COMPLEX*16-dividend,COMPLEX*16-divisor)

 Algorithm:

 The multiplication algorithm takes the form

 (x+iy)•(u+iv) = (x•u-y•v)+i(v•x+u•y).

 The division algorithm is likewise direct and takes the form

 (x•u+y•v)+i(u•y-v•x) ____________________
 u•u+v•v

 with appropriate scaling of the divisor u+iv to avoid
 floating-point overflow or underflow of the denominator.

 Error Conditions:

 Both underflow and overflow exceptions may occur during the
 formation of the final result. Zero-divide exceptions may
 also occur, but only if u=v=0.

 Exponentiation

 FIXPI# (INTEGER*4-base,INTEGER*4-exponent)
 FRXPI# (REAL*4-base,INTEGER*4-exponent)
 FDXPI# (REAL*8-base,INTEGER*4-exponent)
 FCXPI# (COMPLEX*8-base,INTEGER*4-exponent)
 FCDXI# (COMPLEX*16-base,INTEGER*4-exponent)

 Algorithm:

 Though each of these routines differ in some way, they all
 obtain the result by the successive squaring algorithm. This
 algorithm exploits the binary representation of the integer
 exponent to compute R=B**I in the following steps:

 (1) Initialize R=1., S=B and k=0.
 (2) If the k-th bit of |I| is 1, replace the current value
 of R by R•S.
 (3) If one or more of the unexamined bits of |I| is 1,

 The Elementary Function Library 545

 MTS 3: System Subroutine Descriptions

 April 1981

 replace S by S•S, increment k by 1, and return to step
 (2); otherwise, R=B**|I|.

 The FIXPI# routine recognizes a number of special cases, none
 of which actually require any computation.

 Base: ≠0 1 -1 -1 ≠0
 Exponent: 0 any even odd <0
 Result: 1 1 1 -1 0

 During the course of the algorithm, the result is not
 range-checked. Consequently, the result is valid only if it
 is in machine range, i.e., less than 2³¹ = 2,147,483,648.

 The FRXPI# and FDXPI# routines form B**|I|, and then divide
 this result into 1.0 if I is negative. Both routines
 recognize a nonzero base and zero exponent as a special case
 having value 1. These routines range-check the result as it
 is being formed, and will invoke error processing if B**|I| or
 B**I are not machine representable. In FRXPI#, B**|I| is
 formed in double precision.

 In the FCXPI# and FCDXI# routines, a negative exponent causes
 the base to be inverted before the successive squaring
 algorithm is applied. Both routines recognize a nonzero base
 and zero exponent as a special case having value 1. These
 routines do not range-check the result and are subject to
 underflow and overflow exceptions. Note that if underflow
 exceptions are masked off, the complex base is extremely
 small, and the exponent negative, a zero-divide exception may
 occur when the base is initially inverted. These routines use
 the end of the save area for scratch storage.

 Error Conditions:

 All of these routines recognize a zero base and nonpositive
 exponent as an error. In addition, the FRXPI# and FDXPI#
 routines will invoke error processing if either B**|I| or the
 final result is outside machine range. In all cases, the
 default function value is zero.

 FRXPR# (REAL*4-base,REAL*4-exponent)
 FDXPD# (REAL*8-base,REAL*8-exponent)

 Algorithm:

 The result is obtained by using the appropriate logarithm and
 exponential routines, i.e.,

 e **(exponent•ln(base)).

 These routines recognize as a special case the combination of
 a zero base and positive exponent. If exponent•ln(base) < 0,

 546 The Elementary Function Library

 MTS 3: System Subroutine Descriptions

 April 1981

 the final result is not in machine range, and underflows are
 masked off, these routines may return a result of zero.

 Error Conditions:

 The combination of a zero base and nonpositive exponent causes
 error processing to be invoked with a default value of 0.
 Denote the base by B and the exponent by E. If B<0 , but
 |B|**E is in machine range, the default function value is
 |B|**E. If E•ln(|B|) is within machine range, but the result
 is not, the default function value will be zero if E•ln(|B|)<0
 and machine infinity if E•ln(|B|)>0. If E•ln(|B|) is not in
 machine range, the default function value is zero.

 DREAL and DIMAG Functions

 DREAL (COMPLEX*16-variable)
 DIMAG (COMPLEX*16-variable)

 Algorithm:

 Although these routines are described in the IBM FORTRAN
 language manual, the currently available FORTRAN compilers do
 not recognize these names as anything special. Consequently,
 it is necessary to explicitly declare them as REAL*8 func-
 tions. Otherwise, they will be assigned the default mode of
 REAL*4.

 These routines are extremely trivial, consisting of the bare
 minimum of three instructions. Only general register 1 and
 floating-point register 0 are altered by these routines, and a
 save area is not required.

 Error Conditions:

 These routines are subject to specification exceptions since
 they assume the argument is doubleword-aligned.

 ANSI Minimum/Maximum Value Functions

 MIN0/MAX0 (INTEGER*4-variable,...)
 AMIN0/AMAX0 (INTEGER*4-variable,...)
 MIN1/MAX1 (REAL*4-variable,...)
 AMIN1/AMAX1 (REAL*4-variable,...)
 DMIN1/DMAX1 (REAL*8-variable,...)

 Algorithm:

 These routines are identical in structure, accepting a varia-
 ble number of arbitrary arguments of the appropriate mode and
 recognizing no error situations. The resultant modes of these
 entry points are determined by the first character of the
 function names as follows: M=INTEGER*4, A=REAL*4 and D=REAL*

 The Elementary Function Library 547

 MTS 3: System Subroutine Descriptions

 April 1981

 8. The number of arguments processed is determined by the
 last argument flag; and, consequently, addressing or protec-
 tion exceptions may occur if this flag is not properly set.

 548 The Elementary Function Library

 MTS 3: System Subroutine Descriptions

 April 1981

 I/O SUBROUTINE RETURN CODES ___________________________

 The return codes that may result from a call on an input or output
 subroutine depend on the type of the file or the device used in the
 operation. In general, a return code of 0 means successful completion
 of the input or output operation, and a return code of 4 means
 end-of-file for an input operation and end-of-file-or-device for an
 output operation. If the file or device being used was specified as
 part of an explicit concatenation (and is not the last member of that
 concatenation), a return code of 4 causes progression to the next
 element of the concatenation, and that return code is not passed back to
 the caller (unless the NOEC modifier was specified). Thus, for example,
 if

 SCARDS=A+B

 then when the call is made to the SCARDS subroutine after the last line
 in A has been read, the file routines signal an end-of-file, but this is
 intercepted, and the first line in B is read instead.

 Return codes greater than 4 are normally not passed back to the
 caller but instead, an error comment is printed and control is returned
 to MTS command or debug mode. There are two ways to suppress this
 action and gain control in this situation. First, specifying the ERRRTN
 modifier on an I/O subroutine call will cause all return codes to be
 passed back. Second, specifying the NOPROMPT modifier on an I/O
 subroutine call will suppress prompting messages for a replacement
 FDname and will cause the return code to be passed back.

 A description of the return codes that may occur with a particular
 file or device is given with the appropriate sections of MTS Volume 4,
 Terminals and Networks in MTS, and MTS Volume 19, Tapes and Floppy _____________________________ __________________
 Disks. In addition, a summary is given below. Nonzero return codes _____
 marked with an asterisk are normally not passed to the calling program;
 the others are always passed to the calling program.

 Files:
 Input 0 Successful return
 4 End-of-file (sequential read)
 Line not in file (indexed read)
 8* Error
 12* Access not allowed
 16* Cannot wait due to deadlock
 20* Illegal operation on sequential file
 24* Backwards operation not allowed on sequential
 file
 28* Wait interrupted

 I/O Subroutine Return Codes 549

 MTS 3: System Subroutine Descriptions

 April 1981

 Output 0 Successful return
 4 End-of-file (line number not in line-number
 range)
 4* Size of file exceeded
 8* Line numbers not in sequence (SEQWL)
 12* Access not allowed
 16* Cannot wait due to deadlock
 20* Sequential file written with indexed modifier,
 or written with starting line number other than
 1
 24* Disk allotment exceeded
 28* Hardware or system error
 32* Line truncated (@SP on sequential file)
 36* Line padded (@SP on sequential file)
 40* Wait interrupted

 Magnetic Tape:
 Input 0 Successful return
 4 Tape-mark (end-of-file) sensed on read, read
 backward, BSR, or FSR operation
 8 Load point reached on read backward, BSR, or
 BSF operation
 12* Logical end of labeled tape reached on read,
 FSR, or FSF operation
 16* Permanent read error, data converter check,
 invalid control command, invalid control com-
 mand parameter, or file not found on POSN
 operation
 20* Should not occur
 24* Fatal error (may be due to hardware malfunc-
 tion, label error in which the position of the
 tape is uncertain, or pulling the tape off the
 end of the reel during a read, FSR, or FSF
 operation); following a fatal error, the tape
 must be rewound before any other I/O operation
 is allowed
 28* Volume or data set in error
 32* Sequence error (may be caused by issuing a
 control command when the tape is not positioned
 properly, or by a read, FSR, or FSF operation
 following a write operation)
 36* Deblocking error caused by improper blocking
 parameters, e.g., attempting to deblock a for-
 mat FB file using a format VB specification
 40* Invalid tape mode (tape drive cannot process
 tapes at this density)
 44* Access not allowed

 Output 0 Successful return
 4 End-of-tape marker sensed during write or WTM
 operation, i.e., the tape is full
 8 Load point reached on read backward, BSR, or

 550 I/O Subroutine Return Codes

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 BSF operation
 12* Attempt to write more than 5 additional records
 after end-of-tape marker sensed
 16* Permanent write error, data converter check,
 invalid control command, or invalid control
 command parameter
 20* Attempt to write on file-protected tape or
 unexpired file
 24* Fatal error (may be due to hardware malfunc-
 tion, label error in which the position of the
 tape is uncertain, or pulling the tape off the
 end of the reel during a read, FSR, or FSF
 operation); following a fatal error, the tape
 must be rewound before any other I/O operation
 is allowed
 28* Volume or data set in error
 32* Sequence error (may be caused by issuing a
 control command when the tape is not positioned
 properly, or by a read, FSR, or FSF operation
 following a write operation)
 36* Blocking error caused by improper blocking
 parameters or parameters which are inconsistent
 with the labels of the file being written
 40* Invalid tape mode (tape drive cannot process
 tapes at this density)
 44* Access not allowed

 Paper Tape:
 Input 0 Successful return
 4 End-of-file
 8* End-of-tape
 12* Invalid control command
 16* Hardware malfunction
 20* Parity error

 Output 8* Attempt to write on paper-tape reader

 Batch Monitor Input:
 Input 0 Successful return
 4 End-of-file
 8* Attempt to read in column binary mode

 Output 8* Attempt to write on card reader

 Printed Output:
 Input 8* Attempt to read from printer

 Output 0 Successful return
 8* Local page limit exceeded

 I/O Subroutine Return Codes 551

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 (user never regains control after a global _____
 limit is exceeded)

 Punched Output:
 Input 8* Attempt to read from punch

 Output 0 Successful return
 8* Local card limit exceeded
 (user never regains control after a global _____
 limit is exceeded)

 Merit/UMnet Network:
 Input 0 Successful return
 4 End-of-file read from network. This does not
 necessarily mean that there is no more data to
 be read from the network, only that the remote
 terminal or host has sent an end-of-file.
 8* Read not allowed; must do a write. This means
 that the remote host is requesting input from
 the network connection and, to avoid a dead-
 lock, the local program must not read from the
 network. The prompting characters, if any,
 sent by the remote host when it did the read
 are returned to the user.
 12* Should not occur
 16* Connection is closed: no I/O may be done
 20* Should not occur
 24* Attention interrupt received from MOUNTed net-
 work connection
 28* Same as return code 8 except that the remote
 host has requested that the input area be
 blanked for "n" characters, where "n" is re-
 turned as a 2-digit decimal number followed by
 the prompting characters. A value of "00"
 means that no specific number of characters has
 been specified.
 44* Read on a MOUNTed network connection was termi-
 nated by an attention interrupt from the user’s
 terminal. No data is returned.
| 48* Read on a MOUNTed network connection was termi-
| nated because no data was received from the
| network by MTS within the time specified by the
| "timeout" network device command. No data was
| returned. (Note: This will not occur unless a
| "timeout" device command was issued since, by
| default, input operations are not timed.)
 64* Should not occur

 Output 0 Successful return
 4* Should not occur
 8* Write not allowed; must do a read. This means

 552 I/O Subroutine Return Codes

 MTS 3: System Subroutine Descriptions

 April 1981 Page Revised September 1989

 that the remote host has issued a write on the
 network connection and, to avoid a deadlock,
 the local program must not write on the
 network.
 12* Should not occur
 16* Connection is closed: no I/O may be done
 20* Should not occur
 24* Attention interrupt received from MOUNTed net-
 work connection
 64* Should not occur

 Floppy Disks:
 Input 0 Successful return
 4 End-of-file on diskette
 8 DDAM detected with DDAM=OFF
 12* CRC error on read operation
 16* Nonrecoverable error

 Output 0 Successful return
 4 Attempt to write nonexistent track or sector
 8 Should not occur
 12* CRC error on write operation
 16* Nonrecoverable error
 20* Attempt to write on write-protected diskette

 Most Other Devices:
 Input 0 Successful return
 4 End-of-file
 8* Error

 Output 0 Successful return
 4 End-of-file-or-device (if applicable)
 8 Error

 I/O Subroutine Return Codes 553

 MTS 3: System Subroutine Descriptions

 Page Revised September 1989 April 1981

 554 I/O Subroutine Return Codes

 MTS 3: System Subroutine Descriptions

 April 1981

 I/O MODIFIERS _____________

 This section lists all the I/O modifiers that may be used with
 FDnames or with calls to I/O subroutines.

 The device types discussed below in the exceptions to the default
 modifier bit specifications are the device types as returned by the
 GDINFO subroutine (see GDINFO subroutine description in this volume).
 Some of the device types discussed are given below; the remainder are
 given in the section "System Device List" in this volume.

 FILE Line files
 SEQF Sequential files
 HRDR Batch monitor card input
 HPTR Batch monitor printed output
 HPCH Batch monitor punched output
 9TP 9-track magnetic tape
 MNET Merit/UMnet Computer Network
 3270 IBM 3278 Display Station terminals

 The values indicated below with each bit specification are the values
 that the modifier word for a subroutine call would have if only that
 modifier option was specified.

 First Fullword of Modifier Bits _______________________________

 Bit 31 SEQUENTIAL, S Value: 1 (dec) 00000001 (hex)
 30 INDEXED, I 2 00000002

 Default: SEQUENTIAL
 Exceptions: None

 The SEQUENTIAL modifier specifies that the input or output
 operation is to be done sequentially. The INDEXED modifier
 specifies that an indexed operation is to be performed.

 In general, the INDEXED modifier is applied only to line
 files, while the SEQUENTIAL modifier is applied to line
 files, sequential files, and all types of devices. Note
 that the SEQUENTIAL modifier and the sequential file are not
 directly related.

 I/O operations involving line files may be performed with ____ _____
 either SEQUENTIAL or INDEXED specified. I/O operations
 involving sequential files must be done SEQUENTIALly. If __________ _____
 the user specifies INDEXED on an I/O operation to a

 I/O Modifiers 555

 MTS 3: System Subroutine Descriptions

 April 1981

 sequential file, an error message is generated unless the
 global switch SEQFCHK is OFF, in which case the operation is
 performed as if SEQUENTIAL was specified. Attempting a
 sequential operation with a starting line number other than
 1, e.g., COPY FYLE(2), also gives an error comment if
 SEQFCHK is ON.

 I/O operations involving devices, such as card readers,
 printers, card punches, magnetic tape units, paper tape
 units, and terminals, are inherently sequential and are
 normally done SEQUENTIALly. If the SEQUENTIAL modifier is
 specified, the line number associated with the line is the
 value of the current line number plus (minus, if the
 backwards I/O modifier is given) the increment specified on
 the FDname. If the INDEXED modifier is specified, the line
 number associated with the line is the line number specified
 in the calling sequence. For devices, the INDEXED modifier
 is used primarily in conjunction with the PREFIX modifier.
 Note that the device treats the I/O operation as if
 SEQUENTIAL were specified.

 For further details about indexed and sequential input/
 output operations, see the section "Files and Devices" in
 MTS Volume 1, The Michigan Terminal System. ____________________________

 Bit 29 EBCD Value: 4 (dec) 00000004 (hex)
 28 BINARY, BIN 8 00000008

 Default: EBCD
 Exceptions: None

 The EBCD/BINARY modifier pair is device-dependent as to the
 action specified. For card readers and punches, the EBCD
 modifier specifies EBCDIC translation of the card image;
 this means that each card column represents one of the 256
 8-bit EBCDIC character codes. The BINARY modifier specifies
 that the card images are in column binary format; this means
 that each card column represents two 8-bit bytes of informa-
 tion. The top six and bottom six punch positions of each
 column correspond to the first and second bytes, respective-
 ly, with the high-order two bits of each byte taken as zero.
 Printers and files ignore the presence of this modifier
 pair.

 Other device support routines that recognize this modifier
 pair are:

 (1) The UMnet Computer Network routines
 (2) The Merit Computer Network routines
 (3) The IBM 3278 Display Station routines
 (4) The paper-tape routines

 556 I/O Modifiers

 MTS 3: System Subroutine Descriptions

 April 1981

 For information on the use of this modifier pair in
 specifications involving the devices listed above, see the
 respective sections of MTS Volume 4, Terminals and Networks _______________________
 in MTS, and MTS Volume 19, Tapes and Floppy Disks. The list ______ ______________________
 of device support routines recognizing this modifier is
 subject to change without notice. Users who wish to keep
 their programs device-independent should not specify this
 modifier.

 Bit 27 LOWERCASE, LC Value: 16 (dec) 00000010 (hex)
 26 CASECONV, UC 32 00000020

 Default: LOWERCASE
 Exceptions: None

 The LOWERCASE/CASECONV modifier pair is not device-
 dependent. If the LOWERCASE modifier is specified, the
 characters are transmitted unchanged. If the CASECONV
 modifier is specified, lowercase letters are changed to
 uppercase letters. This translation is performed in the __ ___
 user’s virtual memory region. On input operations, the ______ _______ ______ ______
 characters are read into the user’s buffer area and then
 translated. On output operations, the characters are trans-
 lated in the user’s buffer area and then written out. Only
 the alphabetic characters (a-z) are affected by this modi-
 fier. Unlike IBM programming systems, MTS considers the
 characters ¢, ", and ! as special characters rather than
 "alphabetic extenders," and thus, the UC modifier does not ___
 convert ¢, ", and ! into @, #, and $, respectively. Note
 that the conversion to uppercase may also be performed by
 the terminal support routines (see MTS Volume 4, Terminals _________
 and Networks in MTS). ___________________

 Bit 25 NOCC, NOCARCNTRL Value: 64 (dec) 00000040 (hex)
 24 CC, CARCNTRL 128 00000080

 Default: CC

 Exceptions: Line files (FILE), sequential files (SEQF),
 9TP, and HPCH
 Controlled by device commands for MNET

 The NOCC/CC modifier pair is device-dependent. This modi-
 fier pair controls whether logical carriage control on
 output records is enabled. For printers and terminals, the
 first character of each record is taken as logical carriage
 control if it is a valid carriage-control character and if
 the CC modifier is specified. If the first character is not
 valid as a carriage-control character, the record is written
 as if NOCC were specified. For further information on
 logical carriage control, see Appendix H to the section
 "Files and Devices" in MTS Volume 1, The Michigan Terminal _____________________
 System. ______

 I/O Modifiers 557

 MTS 3: System Subroutine Descriptions

 April 1981

 Bit 23 ¬PFX Value: 256 (dec) 00000100 (hex)
 22 PREFIX, PFX 512 00000200

 Default: ¬PREFIX
 Exceptions: None

 The PREFIX modifier pair controls the prefixing of the
 current input or output line with the current line number.
 On terminal input, the current input line number is printed
 before each input line is requested. The line number used
 is determined as specified in the description of the
 SEQUENTIAL and INDEXED modifiers. An example for terminal
 input is

 COPY *SOURCE*(6,,2)@PFX A(6,,2)
 6_ first input line
 8_ second input line
 .
 .
 end-of-file indicator

 The current (prefix) line number is not necessarily equiva-
 lent to the file line number. In the example above, the
 prefix line and the file line numbers were explicitly made
 to correspond by also specifying a line number range on the
 output FDname (the file A). On input from card readers and
 files, the PREFIX modifier has no effect. On terminal
 output, the current line number is printed before each
 output line is written. The line number used is determined
 as specified in the section "Files and Devices" in MTS
 Volume 1, The Michigan Terminal System. An example for _______________________________
 terminal output is

 COPY A(1,10) *SINK*(100,,2)@PFX
 100_ first output line
 102_ second output line
 .
 .

 Note again that the current line number is not equivalent to
 the file line number. On output to the printer or to a
 file, the PREFIX modifier has no effect.

 If the INDEXED and PREFIX modifiers are given together for
 terminal output, the line numbers referenced by the INDEXED
 modifier are the same as those produced by the PREFIX
 modifier. As an example, consider the following FORTRAN
 program segment:

 558 I/O Modifiers

 MTS 3: System Subroutine Descriptions

 April 1981

 INTEGER*2 LEN
 DATA MOD/Z00000202/ Enables INDEXED and PREFIX
 1 CALL READ(REG,LEN,0,LNR,2,&2)
 CALL WRITE(REG,LEN,MOD,LNR,3)
 GO TO 1
 2 STOP

 This program performs a read SEQUENTIAL and a write INDEXED
 and PREFIX. The command (assuming compilation of the above
 into -LOAD)

 RUN -LOAD 2=A 3=*SINK*

 is equivalent to

 COPY A *SINK*@I@PFX

 which is also similar to

 LIST A

 with a slightly different formatting of the line numbers.

 Bit 21 ¬PEEL Value: 1024 (dec) 00000400 (hex)
 20 PEEL, GETLINE#, 2048 00000800
 RETURNLINE#

 Default: ¬PEEL
 Exceptions: None

 The PEEL modifier pair has two functions, depending upon
 whether it is specified on input or on output. On input, if
 the PEEL (GETLINE#) modifier is specified, a line number is
 removed from the front of the current input line. The line
 number is converted to internal form (external value times
 1000) and returned in the line number parameter during the
 read operation (see the subroutine descriptions of SCARDS,
 GUSER, and READ). The complete input line including the
 line number is read into the user input region, PEEL
 processing is performed, the line number (if any) is
 removed, the remainder of the line is shifted left by the
 number of characters in the line number, and the length to
 be returned is decremented by the number of characters
 removed. Thus, the user input region must be large enough
 to accommodate both the line number and the line itself.
 The line number must begin in column 1 (leading zeros are
 permitted). The line-number separator character (defaults
 to ",") may be used to separate the line number from the
 line. As an example, consider the following FORTRAN program
 segment:

 I/O Modifiers 559

 MTS 3: System Subroutine Descriptions

 April 1981

 INTEGER*2 LEN
 DATA MOD/2048/
 1 CALL SCARDS(REG,LEN,MOD,LNR,&2) Read with PEEL
 CALL SPRINT(REG,LEN,0,LNR)
 GO TO 1
 2 STOP

 The program reads an input line, removes the line number,
 and writes out the line without its line number. Execution
 of the object module of the sample program is as follows:

 RUN -OBJ SCARDS=*SOURCE* SPRINT=ABC
 10AAA
 12BBB

 is equivalent to

 COPY *SOURCE*@GETLINE# ABC
 10AAA
 12BBB

 Listing the file ABC produces

 LIST ABC
 1 AAA
 2 BBB

 If the PEEL modifier is specified on input in conjunction
 with the INDEXED modifier on output, the line number of the
 input line can be used to control the destination of the
 line during output. For example:

 INTEGER*2 LEN
 DATA MOD1/2048/, MOD2/2/
 1 CALL SCARDS(REG,LEN,MOD1,LNR,&2) Read with PEEL
 CALL SPRINT(REG,LEN,MOD2,LNR) Write INDEXED
 GO TO 1
 2 STOP

 This program reads an input line, removes the line number,
 and writes out the line with the extracted line number as
 the line number specification for an indexed write operation
 The following sequence (assuming compilation of the above
 into -LOAD)

 RUN -LOAD SCARDS=*SOURCE* SPRINT=ABC
 10AAA
 12BBB

 is equivalent to

 560 I/O Modifiers

 MTS 3: System Subroutine Descriptions

 April 1981

 COPY *SOURCE*@GETLINE# ABC@I
 10AAA
 12BBB

 Listing the file ABC produces

 LIST ABC
 10 AAA
 12 BBB

 On output, if the PEEL (RETURNLINE#) modifier is specified,
 the line number of the current output line is returned in
 the line number parameter of the subroutine call during the
 write operation (see the subroutine descriptions of SPRINT,
 SPUNCH, SERCOM, and WRITE). The line itself is written out
 and is unaffected by the presence or absence of this
 modifier. The modifier is used on output to aid the
 programmer in recording the line number of the current line
 written out.

 Bit 19 ¬MCC Value: 4096 (dec) 00001000 (hex)
 18 MACHCARCNTRL, MCC 8192 00002000

 Default: ¬MCC
 Exceptions: None

 The machine carriage-control modifier pair is device-
 dependent and in general its use is discouraged. The MCC
 modifier is used for printing output (via printers or
 terminals) from programs producing output in which the first
 byte of each line is to be used as a machine carriage-
 control command for output to an IBM 1403 (or 1443) printer.
 If the MCC modifier is specified and the first byte of the
 output line is a valid 1403 machine carriage-control command
 code, the line is spaced accordingly and printing starts
 with the next byte as column 1. If the first byte is not a
 valid 1403 machine carriage-control command code, the entire
 line is printed using single-spacing. Spacing operations
 performed by machine carriage control occur after the line _____
 is printed (as opposed to logical carriage control in which
 the spacing is performed before each line is printed). Most ______
 programs do not produce output using machine carriage
 control. The MCC modifier pair is ignored for files and
 devices other than printers, terminals connected through the
 UMnet or Merit Computer Networks, or IBM 3278 Display
 Station terminals. For further information on machine
 carriage control, see Appendix H to the section "Files and
 Devices" in MTS Volume 1, The Michigan Terminal System. ____________________________

 I/O Modifiers 561

 MTS 3: System Subroutine Descriptions

 April 1981

 Bit 17 ¬TRIM Value: 16384 (dec) 00004000 (hex)
 16 TRIM 32768 00008000

 Default: ¬TRIM
 Exceptions: TRIM for 3270, HPTR, and 3066
 Controlled by TRIM option of SET command for
 line files and sequential files

 The TRIM modifier pair is used to control the trimming of
 trailing blanks from input or output lines. If the TRIM
 modifier is specified, all trailing blanks except one are ______ ___
 trimmed from the line. If ¬TRIM is specified, the line is
 not changed. For an input operation, trimming does not ___
 physically delete the trailing blanks from the line, but
 only changes the line length count. Note that the UMnet or
 Merit Computer Network termimal routines unconditionally
 trim blanks from output lines.

 Bit 15 ¬SP Value: 65536 (dec) 00010000 (hex)
 14 SPECIAL, SP 131072 00020000

 Default: ¬SP
 Exceptions: None

 The SPECIAL modifier pair is reserved for device-dependent
 uses. Its meaning depends upon the particular device type
 with which it is used. The device support routines recog-
 nizing this modifier pair are:

 (1) The file routines
 (2) The UMnet Computer Network routines
 (3) The Merit Computer Network routines
 (4) The IBM 3278 Display Station routines
 (5) The paper-tape routines

 The file routines use the SPECIAL modifier to mean skip on a
 read operation to a sequential file, and to mean replace on
 a write operation to a sequential file. For further
 details, see the section "Files and Devices" in MTS Volume
 1, The Michigan Terminal System. ____________________________

 For information on the use of this modifier pair in
 specifications involving the devices listed above, see the
 corresponding sections of MTS Volume 4, Terminals and ______________
 Networks in MTS, and MTS Volume 19, Tapes and Floppy Disks. ________________ ______________________
 The list of device support routines recognizing this modi-
 fier is subject to change without notice. Users who wish to
 keep their programs device-independent should not specify
 this modifier.

 562 I/O Modifiers

 MTS 3: System Subroutine Descriptions

 April 1981

 Bit 13 ¬IC Value: 262144 (dec) 00040000 (hex)
 12 IC 524288 00080000

 Default: The setting of the IC global switch (initially
 ON)
 Exceptions: None

 The IC modifier pair controls implicit concatenation. If
 the IC modifier is specified, implicit concatenation occurs
 via the "$CONTINUE WITH" line. If ¬IC is specified,
 implicit concatenation does not occur. For example, LIST
 PROGRAM@¬IC lists the file PROGRAM and prints "$CONTINUE
 WITH" lines instead of interpreting them as implicit concat-
 enation. The use of the IC modifier in I/O subroutine calls
 or as applied to FDnames overrides the setting of the
 implicit concatenation global switch (SET IC=ON or SET
 IC=OFF) for the I/O operations for which it is specified.

 Bit 11 FWD, FORWARDS Value: 1048576 (dec) 00100000 (hex)
 10 BKWD, BACKWARDS 2097152 00200000

 Default: FWD
 Exceptions: None

 The forwards-backwards modifier pair control the direction
 of the next sequential read operation. On a read backwards
 operation, the information is placed in the designated
 region in a manner identical to a read forwards operation,
 i.e., the front of the logical record is placed at the
 beginning of the region. For further details on using this
 modifier, see the section "Files and Devices" in MTS Volume
 1, The Michigan Terminal System. ____________________________

 Bit 9 ¬ENDFILE Value: 4194304 (dec) 00400000 (hex)
 8 ENDFILE Value: 8388608 00800000

 Default: The setting of the ENDFILE global switch
 (initially OFF)
 Exceptions: None

 The ENDFILE modifier pair controls the recognition of the
 $ENDFILE command delimiter in the input stream. If ENDFILE
 is specified, the $ENDFILE line is always recognized as a
 command delimiter. If ¬ENDFILE is specified, the $ENDFILE
 line is never recognized as a command delimiter (the line is
 taken as a data line). If neither is specified, the
 recognition of the $ENDFILE line is governed by the setting
 of the ENDFILE global switch (initially OFF). See the SET
 command for further details.

 I/O Modifiers 563

 MTS 3: System Subroutine Descriptions

 April 1981

 Bit 7 FDUBCONT Value: 16777216 (dec) 01000000 (hex)

 Default: ¬FDUBCONT
 Exceptions: None

 The FDUBCONT modifier may be used to specify that another
 fullword of modifier bits follows the current fullword.
 This modifier may be used only with an I/O subroutine call;
 it may not be used with an FDname.

 Bit 5 NOPROMPT Value: 67108864 (dec) 04000000 (hex)

 Default: ¬NOPROMPT
 Exceptions: None

 The NOPROMPT modifier may be used to allow control to be
 returned to a program after certain errors occur that would
 otherwise result in a request for a replacement FDname in
 conversational mode or program termination in batch mode.
 If the NOPROMPT modifier is specified (bit 5 in the modifier
 word is 1) when an I/O subroutine call is made, GR0 will be
 set to a value (see the section "Special Returns" below)
 indicating that either the I/O operation terminated because
 of an error while attempting to open a new logical I/O unit
 or FDUB, or that the I/O operation was completed with its
 success or failure indicated by the return code in GR15.
 This modifier may be used only with an I/O subroutine call;
 it may not be specified with an FDname.

 Bit 4 MAXLEN Value: 134217728 (dec) 08000000 (hex)

 Default: ¬MAXLEN
 Exceptions: None

 If the MAXLEN modifier is specified (bit 4 in the modifier
 word is 1) when an I/O input subroutine call is made, only a _____
 maximum specified number of bytes of an input record will be
 returned by the read operation. The second parameter of the
 input subroutine points to three halfwords instead of the
 normal single halfword. The first halfword is set to the
 length of the record returned by the read operation; the
 second halfword is preset by the caller to specify the
 maximum record length that is desired; and the third
 halfword is set to the actual (physical) length of the
 record. If the incoming record is longer than the maximum
 length as specified by the second halfword, the record
 returned will be truncated to the maximum specified length.
 If the DSR cannot determine the actual length of the record,
 the third halfword will be set to -1. If the incoming
 record is less than or equal to the maximum specified
 length, the first and third halfwords are not guaranteed to
 be identical values if the TRIM modifier is in effect. This

 564 I/O Modifiers

 MTS 3: System Subroutine Descriptions

 April 1981

 modifier may be used only with an I/O subroutine call; it
 may not be specified with an FDname.

 Bit 3 NOEC Value: 268435456 (dec) 10000000 (hex)

 Default: ¬NOEC
 Exceptions: None

 If the NOEC modifier is specified (bit 3 in the modifier
 word is 1) when an I/O subroutine call is made, explicit
 concatenation will be inhibited, i.e., if an end-of-file
 (return code 4) occurs, a return will be made to the calling
 program instead of proceeding with the next member of the
 concatenation (if any). This modifier may be used only with
 an I/O subroutine call; it may not be specified with an
 FDname.

 Bit 2 NOATTN Value: 536870912 (dec) 20000000 (hex)

 Default: ¬NOATTN
 Exceptions: None

 If the NOATTN modifier is specified (bit 2 in the modifier
 word is 1) when an I/O subroutine call is made, all pending
 attention and timer interrupts, and all attention and timer
 interrupts occurring during the call, are left pending.
 This modifier is useful only when used by systems programs
 (by systems programmers). It may be used only with an I/O
 subroutine call; it may not be used with an FDname.

 Bit 1 ERRRTN Value: 1073741824 (dec) 40000000 (hex)

 Default: ¬ERRRTN
 Exceptions: None

 If the ERRRTN modifier is specified (bit 1 in the modifier
 word is 1) when an I/O call is made, and if an I/O error
 occurs, the error return code is passed back to the calling
 program instead of printing an error comment. The error
 return code is returned in general register 15. If the
 NOPROMPT modifier is also specified, an error indication may
 be returned in register 0 for some error conditions. The
 error comment may be retrieved by calling the subroutine
 GDINFO. This modifier may be used only with an I/O
 subroutine call; it may not be used with an FDname.

 This modifier will cause any calls to the subroutines
 SETIOERR or SIOERR to be ignored.

 I/O Modifiers 565

 MTS 3: System Subroutine Descriptions

 April 1981

 Bit 0 NOTIFY Value: -2147483648 (dec) 80000000 (hex)

 Default: ¬NOTIFY
 Exceptions: None

 If the NOTIFY modifier is specified (bit 0 in the modifier
 word is 1) when an I/O subroutine call is made, GR0 will be
 set to a value (see the section "Special Returns" below)
 indicating that the I/O operation did or did not cause a new
 FDUB to be opened. A new FDUB is opened when

 (1) implicit concatenation occurs,
 (2) explicit concatenation occurs,
 (3) a FDUB or logical I/O unit is used for the first
 time,
 (4) a return is made from implicit concatenation, or
 (5) the maximum line length increases.

 This modifier may be used only with an I/O subroutine call;
 it may not be specified with an FDname.

 Second Fullword of Modifier Bits ________________________________

 Bit 31 ¬LOG Value: 1 (dec) 00000001 (hex)
 30 LOG 2 00000002

 Default: LOG
 Exceptions: None

 If the LOG modifier is specified, the read or write
 operation will be logged in the log file, if logging is
 enabled by the LOG command. By specifying ¬LOG, the user
 may suppress information from being written into the log
 file.

 Bit 29 ¬MACRO Value: 4 (dec) 00000004 (hex)
 28 MACRO 8 00000008

 Default: MACRO
 Exceptions: None

 If the MACRO modifier is specified and the input is being
 read from *SOURCE* (or equivalent), the MTS macro processor
 is called to interpret lines for macro commands or macro
 invocations. If the ¬MACRO is specified, the macro proces-
 sor is not called. SET MACROS=ON must be specified for this
 modifier to be effective. The MACRO modifier pair has no
 effect on the generation of lines by a macro once it is
 invoked; these lines are always generated whether or not the
 MACRO or ¬MACRO modifier is subsequently specified.

 566 I/O Modifiers

 MTS 3: System Subroutine Descriptions

 April 1981

 Bit 27 ¬MFR Value: 16 (dec) 00000010 (hex)
 26 MFR 32 00000020

 Default: MFR

 If the MFR (macro flag required) modifier is specified and
 the input is being read from *SOURCE* (or equivalent), the
 ">" macro flag character must be given for lines that are
 macro invocations. If the ¬MFR modifier is specified, the ___________
 ">" is not required. The MACRO modifier and SET MACROS=ON
 must be also be specified for this modifier to be effective.
 The MFR modifier pair does not affect lines that are macro
 commands; these always require the flag character. ________

 Certain programs including the MTS command processor and
 several command-language subsystems (CLSs) read using the
 ¬MFR modifier.

 Special Returns _______________

 If the NOPROMPT (bit 5) or NOTIFY (bit 0) modifiers are specified
 when an I/O subroutine call is made, the bits in GR0 will indicate the
 result of the subroutine call. If no bits are set (GR0 is zero), the
 I/O operation was completed and its success or failure is indicated by
 the return code in GR15. If GR0 is nonzero, the I/O operation
 terminated without completion. The bit assignments are:

 Bit 31 - The NOTIFY modifier was enabled and a new FDUB was opened as
 the result of this call, or an old FDUB was used for the
 first time with the @NOTIFY modifier.
 Bit 30 - The NOPROMPT modifier was enabled and an error occurred
 while opening a new logical I/O unit or FDUB.
 Bit 29 - The DSR says that no password is required (system mode
 only).

 The values of bits 0-28 are unpredictable and are reserved for future
 expansion.

 I/O Modifiers 566.1

 MTS 3: System Subroutine Descriptions

 April 1981

 566.2 I/O Modifiers

 MTS 3: System Subroutine Descriptions

 April 1981

 SYSTEM DEVICE LIST __________________

 The following is a list of all the devices in the University of
 Michigan hardware configuration as of the date of publication. Each
 class of device in the system is identified by a three- or four-
 character device type; each specific device in the system is identified
 by a three- or four-character device name. In the list below only the
 form of the device name is given since the actual device names are
 subject to change without notice.

 The device type is the type field returned by the subroutine GDINFO
 when it is called for information about a particular device (see the
 GDINFO subroutine description in this volume).

 Device Type Device Name Explanation ___________ ___________ ___________

 MRXA LAnn Memorex 1270 Terminal Controller line
 PDP8 CCnn PDP-11 Data Concentrator line
 PDP8 CCOP PDP-11 Data Concentrator Oper. Console
 PDP8 PLTn Plotter
 FDSK FLPn Floppy Disk
 3270 DSnn IBM 3270-type Display Station
 3284 PTRn IBM 3284, 3286, or 3287 Printer
 MNET AAnn Merit/UMnet Network Commun. line
 MNET ABnn Merit/UMnet Network Commun. line
 MNET ADnn Merit/UMnet Network Commun. line
 MNET AEnn Merit/UMnet Network Commun. line
 MNET AFnn Merit/UMnet Network Commun. line
 MNET ANnn Merit/UMnet Network Commun. line
 MNET AAOP Merit/UMnet Network Oper. Console
 MNET ABOP Merit/UMnet Network Oper. Console
 MNET ADOP Merit/UMnet Network Oper. Console
 MNET AEOP Merit/UMnet Network Oper. Console
 MNET AFOP Merit/UMnet Network Oper. Console
 MNET ANOP Merit/UMnet Network Oper. Console
 3203 PTRn Memorex 3203 Line Printer
 9700 PTRn Xerox 9700 Page Printer
 RDR RDRn IBM 2501 Card Reader
 PCH PCHn IBM 1442 Card Punch
 SDA SDAn Synchronous Data Adaptor II (BSC) line
 (remote batch service)
 9Tp T9nn IBM 3420-compatible Magnetic Tape Unit
 3380 Dnnn IBM 3380-compatible Disk Storage Unit
 6280 Dnnn Amdahl 6280 Disk Storage Units
 3805 FBnn Intel 3805 or 3825 Paging Device

 System Device List 566.3

 MTS 3: System Subroutine Descriptions

 April 1981

 566.4 System Device List

 MTS 3: System Subroutine Descriptions

 April 1981

 SUBROUTINES USING FILES AND DEVICES ___________________________________

 This section provides a summary of the system subroutines that use
 file name, logical I/O units, and FDUB-pointers. The access column
 gives the type of file access necessary to call the subroutine (where
 appropriate); if marked as "---", file access is not checked or is
 irrelevant to the function of the subroutine. The following access
 abbreviations are used in the table:

 Access Meaning ______ _______

 R Read
 WC Write-change
 WE Write-expand
 W Write-change and write-expand
 D/R Destroy/Rename
 T/R Truncate/Renumber
 P Permit

 Subroutines Using Files and Devices 567

 MTS 3: System Subroutine Descriptions

 April 1981

 ┌──┐ ┌ ┌
 |Subroutine | Purpose | Access |
 |───────────┼──┼─────────────| ┌ ┘
BSRF	To backspace records in a file.	R, WC, or WE
CFDUB	To determine if two FDUB-pointers refer to	---
	the same file or device.	
CHGFSZ	To change the SIZE or MAXSIZE of a file.	See below¹
CHGMBC	To change the number of buffers used to	Any access
	read or write a file.	
CHGXF	To change the expansion factor of a file. T/R	
CHKACC	To determine the access to a file.	Any access
───────────┼──┼─────────────	┌ ┘	
CHKFDUB	To get a FDUB-pointer for a given logical	---
	I/O unit; to check if a FDUB-pointer is	
	valid.	
CHKFILE	To determine the existence of a file.	Any access
CLOSEFIL	To close a file.	See below²
CNTLNR	To count a set of lines in a line file.	R
CONTROL	To perform a control operation on a file	See below³
	or device.	
───────────┼──┼─────────────	┌ ┘	
CREATE	To create a file.	---
DESTROY	To destroy a file.	D/R
EMPTY	To empty a file.	WC
EMPTYF	To empty a file (FORTRAN-callable).	WC
FREEFD	To release a FDUB-pointer.	See below²
───────────┼──┼─────────────	┌ ┘	
FSIZE	To determine the file size needed for a	---
	data set.	
FSRF	To forward space records in a file.	R, WC, or WE
GDINFO	To get information about a file or device.	Any access
GDINFO2	To get information about a file or device	Any access
	(without opening it).	
GDINFO3	To get information about a file or device	Any access
	(without locking it).	
GETFD	To get a FDUB-pointer for a file or	---
	device.	
GETFST	To get the line number of the first line	Any access
	in a file.	
GETLST	To get the line number of the last line in	Any access
	a file.	
 └──┘ ┘ ┘

 568 Subroutines Using Files and Devices

 MTS 3: System Subroutine Descriptions

 April 1981

 ┌──┐ ┌ ┌
 |Subroutine | Purpose | Access |
 |───────────┼──┼─────────────| ┌ ┘
GFINFO	To get file and catalog information about	See below⁴
	a file.	
GUSER	To read from logical I/O unit GUSER.	R
LETGO	To unlock and relock a file.	See below⁵
LOCK	To explicitly lock a file.	See below⁵
NOTE	To return position information for a	Any access
	sequential file.	
───────────┼──┼─────────────	┌ ┘	
PERMIT	To permit a file.	P
POINT	To position a sequential file.	See below⁶
READ	To read from a file or device.	R
RENAME	To rename a file.	D/R
RENUMB	To renumber a line file.	T/R, or R
		and W
───────────┼──┼─────────────	┌ ┘	
RETLNR	To return a set of line numbers in a line	R or T/R
	file.	
REWIND	To rewind a logical I/O unit.	See below⁷
REWIND#	To rewind a file or device.	See below⁷
SCARDS	To read from logical I/O unit SCARDS.	R
SETFSAVE	To control system file saving.	P
SETKEY	To set the program key for a file.	P
───────────┼──┼─────────────	┌ ┘	
SETLIO	To attach a file or device to a logical	---
	I/O unit.	
SETLNR	To set a set of line numbers in a line	T/R, or R
	file.	and W
SERCOM	To write on logical I/O unit SERCOM.	See below⁸
SKIP	To position a magnetic tape.	---
SPRINT	To write on logical I/O unit SPRINT.	See below⁸
───────────┼──┼─────────────	┌ ┘	
SPUNCH	To write on logical I/O unit SPUNCH.	See below⁸
TRUNC	To truncate a file.	T/R or WE
UNLK	To explicitly unlock a file.	See below²
WRITE	To write on a file or device.	See below⁸
WRITEBUF	To write all changed file buffers.	See below²
 └──┘ ┘ ┘

 Subroutines Using Files and Devices 569

 MTS 3: System Subroutine Descriptions

 April 1981

 ¹WE to increase SIZE, MAXSIZE, or expansion factor; T/R to decrease
 SIZE, MAXSIZE, or expansion factor.
 ²Checked by previous operations.
 ³Same as corresponding subroutine for type of operation performed.
 ⁴P for full sharing information; any access for all other information.
 ⁵Any access for read lock; P, D/R, T/R, WC, or WE for modify lock; P or
 D/R for destroy lock.
 ⁶R to change read pointer; WC or WE to change write pointer; WC to
 change last pointer or last line number.
 ⁷Any access except for sequential file, the write pointer will not be
 reset without WC or WE access.
 ⁸WE if new line; WC if replacing existing line.

 570 Subroutines Using Files and Devices

 Reader’s Comment Form

 System Subroutine Descriptions
 Volume 3
 April 1981

 Errors noted in publication:

 Suggestions for improvement:

 571

 Your comments will be much appreciated. The completed form may be sent
 to the Computing Center by Campus Mail or U.S. Mail, or dropped in the
 Suggestion Box at the Computing Center, NUBS, or BSAD.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications
 Computing Center
 University of Michigan
 Ann Arbor, Michigan 48109

 572

 Update Request Form

 System Subroutine Descriptions
 Volume 3
 April 1981

 Updates to this manual will be issued periodically as errors are noted
 or as changes are made to MTS. If you desire to have these updates
 mailed to you, please submit this form.

 Updates are also available in the memo files at both the Computing
 Center and NUBS; there you may obtain any updates to this volume that
 may have been issued before the Computing Center receives your form.
 Please indicate below if you desire to have the Computing Center mail to
 you any previously issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 The completed form may be sent to the Computing Center by Campus Mail or
 U.S. Mail, or dropped in the Suggestion Box at the Computing Center,
 NUBS, or BSAD. Campus Mail addresses should be given for local users.

 Publications
 Computing Center
 The University of Michigan
 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _______________________
 British Columbia) should return this form to their respective installa-
 tions. Addresses are given on the reverse side.

 573

 Addresses of other MTS installations:

 The University of Alberta
 Information Coordinator
 352 General Services Bldg.
 Edmonton, Alberta
 Canada T6G 2H1

 Information Officer, NUMAC
 Computing Laboratory
 The University of Newcastle upon Tyne
 Newcastle upon Tyne
 England NE1 7RU

 Rensselaer Polytechnic Institute
 Documentation Librarian
 130 Amos Eaton Hall
 Troy, New York 12181

 Simon Fraser University
 Computing Centre
 User Services Information Group
 Burnaby, British Columbia
 Canada V5A 1S6

 Wayne State University
 Computing Services Center
 Academic Services Documentation Librarian
 5925 Woodward Ave.
 Detroit, Michigan 48202

 574

